Abstract

We have used an InGaAs/InP single-photon avalanche diode detector module in conjunction with a time-of-flight depth imager operating at a wavelength of 1550 nm, to acquire centimeter resolution depth images of low signature objects at stand-off distances of up to one kilometer. The scenes of interest were scanned by the transceiver system using pulsed laser illumination with an average optical power of less than 600 µW and per-pixel acquisition times of between 0.5 ms and 20 ms. The fiber-pigtailed InGaAs/InP detector was Peltier-cooled and operated at a temperature of 230 K. This detector was used in electrically gated mode with a single-photon detection efficiency of about 26% at a dark count rate of 16 kilocounts per second. The system’s overall instrumental temporal response was 144 ps full width at half maximum. Measurements made in daylight on a number of target types at ranges of 325 m, 910 m, and 4.5 km are presented, along with an analysis of the depth resolution achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics4(7), 429–430 (2010).
    [CrossRef]
  2. M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
    [CrossRef]
  3. C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
    [CrossRef]
  4. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  5. G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron.13(4), 1006–1015 (2007).
    [CrossRef]
  6. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging13(1), 231–243 (2004).
    [CrossRef]
  7. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt.38(9), 1833–1840 (1999).
    [CrossRef] [PubMed]
  8. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn.34(3-4), 503–549 (2002).
    [CrossRef]
  9. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).
  10. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).
  11. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt.48(32), 6241–6251 (2009).
    [CrossRef] [PubMed]
  12. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express16(18), 13685–13698 (2008).
    [CrossRef] [PubMed]
  13. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005).
    [CrossRef]
  14. D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
    [CrossRef]
  15. C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
    [CrossRef]
  16. H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today's Networks (Sams, Indianapolis, 2002).
  17. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
    [CrossRef]
  18. R. Henderson and K. Schulmeister, Laser Safety (Institute of Physics Publishing, 2004).
  19. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
    [CrossRef]
  20. P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
    [CrossRef]
  21. M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).
  22. M. A. Diagne, M. Greszik, E. K. Duerr, J. J. Zayhowski, M. J. Manfra, R. J. Bailey, J. P. Donnelly, and G. W. Turner, “Integrated array of 2-μm antimonide-based single-photon counting devices,” Opt. Express19(5), 4210–4216 (2011).
    [CrossRef] [PubMed]
  23. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
    [CrossRef]
  24. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett.32(15), 2266–2268 (2007).
    [CrossRef] [PubMed]
  25. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013).
    [CrossRef] [PubMed]
  26. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
    [CrossRef]
  27. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: Performance of commercially available InGaAs/lnP detectors,” Appl. Opt.35(16), 2986–2996 (1996).
    [CrossRef] [PubMed]
  28. G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt.37(12), 2272–2277 (1998).
    [CrossRef] [PubMed]
  29. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300-1600-nm range by use of peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt.39(36), 6746–6753 (2000).
    [CrossRef] [PubMed]
  30. P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAs /InP photodiodes for single-photon counting at 1.55 microm,” Appl. Opt.39(36), 6818–6829 (2000).
    [CrossRef] [PubMed]
  31. S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
    [CrossRef]
  32. M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
    [CrossRef]
  33. A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012).
    [CrossRef]
  34. A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012).
    [CrossRef] [PubMed]
  35. A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
    [CrossRef]
  36. A. Nayak, E. Trucco, A. Ahmad, and A. M. Wallace, “SimBIL: appearance-based simulation of burst-illumination laser sequences,” IET Image Proc.2(3), 165–174 (2008).
    [CrossRef]
  37. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express17(8), 6275–6282 (2009).
    [CrossRef] [PubMed]
  38. M. Ren, X. R. Gu, Y. Liang, W. B. Kong, E. Wu, G. Wu, and H. P. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express19(14), 13497–13502 (2011).
    [CrossRef] [PubMed]
  39. N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011).
    [CrossRef]
  40. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
    [CrossRef]

2013

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
[CrossRef]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013).
[CrossRef] [PubMed]

2012

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012).
[CrossRef]

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

2011

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011).
[CrossRef]

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

M. A. Diagne, M. Greszik, E. K. Duerr, J. J. Zayhowski, M. J. Manfra, R. J. Bailey, J. P. Donnelly, and G. W. Turner, “Integrated array of 2-μm antimonide-based single-photon counting devices,” Opt. Express19(5), 4210–4216 (2011).
[CrossRef] [PubMed]

M. Ren, X. R. Gu, Y. Liang, W. B. Kong, E. Wu, G. Wu, and H. P. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express19(14), 13497–13502 (2011).
[CrossRef] [PubMed]

2010

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
[CrossRef]

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics4(7), 429–430 (2010).
[CrossRef]

2009

2008

2007

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron.13(4), 1006–1015 (2007).
[CrossRef]

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett.32(15), 2266–2268 (2007).
[CrossRef] [PubMed]

2006

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

2005

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

2004

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging13(1), 231–243 (2004).
[CrossRef]

2002

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn.34(3-4), 503–549 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

2001

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

2000

1999

1998

1996

Acerbi, F.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012).
[CrossRef]

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Adachi, S.

Ahmad, A.

A. Nayak, E. Trucco, A. Ahmad, and A. M. Wallace, “SimBIL: appearance-based simulation of burst-illumination laser sequences,” IET Image Proc.2(3), 165–174 (2008).
[CrossRef]

Albota, M. A.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Albright, K. L.

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Anti, M.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012).
[CrossRef]

Aull, B. F.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Baek, B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Bahgat Shehata, A.

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

Bai, X. G.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Bailey, R. J.

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Besse, P. A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005).
[CrossRef]

Bird, A. W.

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging13(1), 231–243 (2004).
[CrossRef]

Bosch, T.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Bradley, J.

Bretar, F.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Buller, G. S.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013).
[CrossRef] [PubMed]

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011).
[CrossRef]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
[CrossRef]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt.48(32), 6241–6251 (2009).
[CrossRef] [PubMed]

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express16(18), 13685–13698 (2008).
[CrossRef] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron.13(4), 1006–1015 (2007).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett.32(15), 2266–2268 (2007).
[CrossRef] [PubMed]

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAs /InP photodiodes for single-photon counting at 1.55 microm,” Appl. Opt.39(36), 6818–6829 (2000).
[CrossRef] [PubMed]

Campbell, J. C.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Casperson, D. E.

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Charbon, E.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005).
[CrossRef]

Chen, J.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

Collins, R. J.

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Cova, S.

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: Performance of commercially available InGaAs/lnP detectors,” Appl. Opt.35(16), 2986–2996 (1996).
[CrossRef] [PubMed]

Dalla Betta, G. F.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

Danny, H.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

David, J. P. R.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn.34(3-4), 503–549 (2002).
[CrossRef]

Della Frera, A.

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Diagne, M. A.

Donnelly, J. P.

Dorenbos, S. N.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013).
[CrossRef] [PubMed]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Duerr, E. K.

Entwistle, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

Fernández, V.

Flaud, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Fouche, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Gaalema, S.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Gautier, J. D.

Gemmell, N. R.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Ghioni, M.

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011).
[CrossRef]

Gisin, N.

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Gontijo, I.

Gonzo, L.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

Greszik, M.

Groom, K.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

Gu, X. R.

Gulinatti, A.

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011).
[CrossRef]

Hadfield, R. H.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013).
[CrossRef] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett.32(15), 2266–2268 (2007).
[CrossRef] [PubMed]

Hartmann, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Hernandez-Marin, S.

Hindman, M.

Hiskett, P. A.

Ho, C.

Inoue, S.

Itzler, M. A.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Jiang, X. D.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Kagami, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
[CrossRef]

Kamerman, G. W.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Kato, S.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
[CrossRef]

Klapwijk, T. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Kong, W. B.

Krichel, N. J.

Krysa, A. B.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

Labios, E.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Lacaita, A.

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Liang, Y.

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

Loudon, A. Y.

Lovati, P.

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Mallet, C.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
[CrossRef]

Mandin, J. Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Manfra, M. J.

Marino, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Matsubara, H.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
[CrossRef]

McCarthy, A.

McDonald, P.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Mooney, J. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Morris, B.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Myllyla, R.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Nam, S.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Nam, S. W.

Namekata, N.

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Nayak, A.

A. Nayak, E. Trucco, A. Ahmad, and A. M. Wallace, “SimBIL: appearance-based simulation of burst-illumination laser sequences,” IET Image Proc.2(3), 165–174 (2008).
[CrossRef]

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Ng, J. S.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

Nicholson, J. P.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Niclass, C.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
[CrossRef]

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005).
[CrossRef]

O’Brien, M. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

O'Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Owens, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

Owens, P. C. M.

Pancheri, L.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

Parry, C. S.

Patel, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

Pauls, G.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Pellegrini, S.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Priedhorsky, W. C.

Rangwala, S.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

Rarity, J. G.

Rech, I.

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011).
[CrossRef]

Ren, M.

Ren, X.

Ribordy, G.

Ridley, K. D.

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Robertson, M. J.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAs /InP photodiodes for single-photon counting at 1.55 microm,” Appl. Opt.39(36), 6818–6829 (2000).
[CrossRef] [PubMed]

Rochas, A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Scandiuzzo, M.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

Scarcella, C.

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012).
[CrossRef] [PubMed]

Scarlett, W. R.

Schwarz, B.

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics4(7), 429–430 (2010).
[CrossRef]

Shehata, A. B.

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012).
[CrossRef] [PubMed]

Simoni, A.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

Slomkowski, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Smith, J. M.

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Smith, R. C.

Soga, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
[CrossRef]

Stoppa, D.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

Stuart, G. M.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Sudharsanan, R.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Tan, L. J. J.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

Tanner, M. G.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013).
[CrossRef] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Tapster, P. R.

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Theiler, J.

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Tosi, A.

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012).
[CrossRef]

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Townsend, P. D.

Trucco, E.

A. Nayak, E. Trucco, A. Ahmad, and A. M. Wallace, “SimBIL: appearance-based simulation of burst-illumination laser sequences,” IET Image Proc.2(3), 165–174 (2008).
[CrossRef]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Turner, G. W.

Turner, M. D.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Urena, E. B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Van Duyne, S.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Vander Auwera, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Walker, A. C.

Wall, T. E.

Wallace, A. M.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt.48(32), 6241–6251 (2009).
[CrossRef] [PubMed]

A. Nayak, E. Trucco, A. Ahmad, and A. M. Wallace, “SimBIL: appearance-based simulation of burst-illumination laser sequences,” IET Image Proc.2(3), 165–174 (2008).
[CrossRef]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron.13(4), 1006–1015 (2007).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett.32(15), 2266–2268 (2007).
[CrossRef] [PubMed]

Warburton, R. E.

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett.32(15), 2266–2268 (2007).
[CrossRef] [PubMed]

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Willard, B. C.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Wilson, S. K.

Wu, E.

Wu, G.

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

Yuan, P.

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Zappa, F.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012).
[CrossRef]

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: Performance of commercially available InGaAs/lnP detectors,” Appl. Opt.35(16), 2986–2996 (1996).
[CrossRef] [PubMed]

Zayhowski, J. J.

M. A. Diagne, M. Greszik, E. K. Duerr, J. J. Zayhowski, M. J. Manfra, R. J. Bailey, J. P. Donnelly, and G. W. Turner, “Integrated array of 2-μm antimonide-based single-photon counting devices,” Opt. Express19(5), 4210–4216 (2011).
[CrossRef] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Zbinden, H.

Zeng, H. P.

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Zwiller, V.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013).
[CrossRef] [PubMed]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

Advanced Photon Counting Techniques

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).

Appl. Opt.

Appl. Phys. Lett.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010).
[CrossRef]

IEEE J. Quantum Electron.

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006).
[CrossRef]

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron.13(4), 1006–1015 (2007).
[CrossRef]

IEEE J. Solid-State Circuits

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005).
[CrossRef]

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013).
[CrossRef]

IEEE Trans. Circuits Syst. Regul. Pap.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007).
[CrossRef]

IET Image Proc.

A. Nayak, E. Trucco, A. Ahmad, and A. M. Wallace, “SimBIL: appearance-based simulation of burst-illumination laser sequences,” IET Image Proc.2(3), 165–174 (2008).
[CrossRef]

ISPRS J. Photogramm. Remote Sens.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
[CrossRef]

J. Electron. Imaging

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging13(1), 231–243 (2004).
[CrossRef]

J. Geodyn.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn.34(3-4), 503–549 (2002).
[CrossRef]

J. Mod. Opt.

M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011).
[CrossRef]

J. Phys. D Appl. Phys.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005).
[CrossRef]

Laser Radar Technology and Applications XVII

P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012).
[CrossRef]

Lincoln Lab. J

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).

Lincoln Lab. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).

Meas. Sci. Technol.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
[CrossRef]

Nat. Photonics

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics4(7), 429–430 (2010).
[CrossRef]

Opt. Eng.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Quantum Sensing and Nanophotonic Devices IX

A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012).
[CrossRef]

Rev. Sci. Instrum.

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012).
[CrossRef] [PubMed]

Supercond. Sci. Technol.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

Other

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

R. Henderson and K. Schulmeister, Laser Safety (Institute of Physics Publishing, 2004).

H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today's Networks (Sams, Indianapolis, 2002).

Supplementary Material (1)

» Media 1: AVI (4158 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the layout of the 1550 nm single-photon depth imaging system which comprises a supercontinuum laser source, an InGaAs/InP SPAD detector, a TCSPC module, and a custom transceiver. Optical components include: fiber collimation packages (FC1, FC2, FCT, FCR); polarizing beam splitter (PBS); galvanometer scan mirrors (GM1, GM2); relay lenses (RL1, RL2, RL3); objective lens (OL); longpass filters (LPF1, LPF2); bandpass filters (BPF1, BPF2); shortpass filter (SPF); linear polarizer (LP); half wave plate (HWP); polarization-maintaining fiber (PMF); single mode fiber (SMF). Other abbreviations used: nuclear instrumentation module (NIM); single-photon avalanche diode (SPAD); time correlated single-photon counting (TCSPC).

Fig. 2
Fig. 2

Timing diagram for the gated mode operation used with the SPAD detector. A 40 MHz synchronous clock signal was supplied to the detector module. Using this clock as a trigger, the detector was gated on for a pre-determined period, TON, then switched off until the next clock trigger. If an avalanche event is triggered within the detector (e.g. by an incident photon) during the gate then an output pulse will be registered, as shown at time (a) in the figure. The detector will be rapidly quenched and remain off for a set hold-off time, THO, to reduce the probability of afterpulsing. Any clock triggers (and thus incident photons) will be ignored during this period, e.g. at time (b). Once the hold-off duration is complete, the gate is once again ready to be triggered by the clock. Any photons arriving outside the gate window will be ignored (c), but any photons arriving within the gate window, for example (d), will be detected.

Fig. 3
Fig. 3

The plot in (a), after [25], shows an example of a processed histogram for a single pixel obtained from the measurements made using a free-running SNSPD – peaks corresponding to the optical back reflections from the transceiver components are present. The plot in (b) is from a pixel measurement using the gated InGaAs/InP detector module and shows the result of a cross-correlation between the normalized instrumental timing response (see inset) and the original timing histogram of return photon counts within one period of the laser pulse train. The inset shows the instrumental response function which had a 144 ps full width at half maximum timing jitter. Most of the non-zero cross-correlation is within a gated window of only 7 ns width, and the cross-correlation peak corresponds to the time position of the return signal peak (i.e. 10.34 ns in the example).

Fig. 4
Fig. 4

Depth profile measurements acquired in bright daylight of human models at a stand-off distance of 325 meters. The images in columns (a) and (d) are close-up photographs of the two scenes that were scanned. Both scenes are shown from two different viewpoints and consisted of a human standing in front of a hardboard backplane with a maximum front-to-back surface separation of approximately 400 mm. The depth scans covered an area of approximately 800 × 1000 mm using 60 × 75 pixels, resulting in a pixel-to-pixel spacing of approximately 13 mm in both X and Y. Plots of the depth data obtained for per-pixel acquisition times of 5, 2, 1, and 0.5 ms are shown in columns (b), (c), (e) and (f) – each of these columns show two different viewpoints of the surface plot constructed from the data obtained using the specified per-pixel acquisition time, and the color shading is used to map depth. A per-pixel acquisition time of 1 ms equated to a total scan time of 4.5 s for these scenes. The normalized background noise count rate was calculated to be approximately 93 kcps and 91 kcps for scenes (a) and (d) respectively.

Fig. 5
Fig. 5

Comparison between the results obtained from depth profile scans of a life-sized mannequin and two different human models, at a range of 325 m using a per-pixel acquisition time of 5 ms. The photographs in (a1), (b1), and (c1) are close-up images of the three different scenes that were scanned in similar daylight conditions. The bottom row shows two viewpoints of the plotted depth data that was acquired for each of the three scenes, with the white to black color shading being used to map depth. The plots shown in (a2), (b2), and (c2) use color to map the calculated number of detected return photons in the histogram peak, for each individual pixel, according to the color bar on the right. A distinct variation in the number of detected return photons from the different types of clothing materials can be seen from these intensity images e.g. the knitted cardigan on the female in (b2) has a slightly higher return in comparison to the mannequin’s rain jacket in (a2). Both of these materials appear to have a significantly higher return than the leather jacket worn by the male in (c2). The plots of the human models in (b2) and (c2) highlight the relatively low returns from skin.

Fig. 6
Fig. 6

Material-dependent integrated photon number versus acquisition time per-pixel. The data for the graph shown in (a) was extracted from depth profile scans acquired in daylight of a life-sized mannequin at a stand-off distance of 325 m and using acquisition times of 0.5, 1, 2, 5, 10, and 20 ms per-pixel. Note that the integrated photon number is a nine-pixel-based average using a single pixel and its eight neighbors. The dashed lines in the graph, linking the set of data points for each material, are included as a guide for the reader. The pixel locations corresponding to the plotted data are indicated in the photograph shown in (b). Sets of data points for two different locations on the jacket material are included in the graph – these illustrate how the more pronounced creasing of the material at the lower location results in a significantly lower photon number due to the illuminating beam striking the material at glancing angles. This is similar to what happens at edges, e.g. points on the mannequin outline (see the integrated photon return plots in Fig. 5).

Fig. 7
Fig. 7

Time-of-flight depth profile movie of a swinging soccer ball, ~200 mm diameter, recorded in daylight from a standoff distance of 325 meters (Media 1). The movie recorded the ball swinging in a conical pendulum motion - the four-second, 10 × 10 pixel movie with 10 frames per second was acquired using an acquisition time of 1 ms per pixel. Two different views of the data from ten consecutive frames (numbers 24 to 33) are shown. The images shown in rows (a) and (c) are face-on views as seen from the direction of the transceiver, and the corresponding top-down depth view of the data for each of the frames is shown in rows (b) and (d). The same color scheme is used to map depth in all of the plots.

Fig. 8
Fig. 8

Depth profile measurements made in daylight of a life-size mannequin from a standoff distance of 910 meters. The close-up photographs in column (a) are different viewpoints of the scene that was scanned which consisted of the mannequin against a hardboard backplane. Each depth scan covered an area of approximately 800 × 2000 mm using 30 × 80 pixels, resulting in a pixel-to-pixel spacing of approximately 25 mm in X and Y. Surface plots of the raw depth data obtained for per-pixel acquisition times of 20, 10, 5, and 2 ms are shown in columns (b) to (e) - each of these columns show two different views of the same data obtained with the specified per-pixel acquisition time, and a white to black color shading is used to map depth. A per-pixel acquisition time of 10 ms equated to a total scan time of 24 s for this scene.

Fig. 9
Fig. 9

Depth images acquired in daylight at a stand-off distance of 4500 meters of a scene containing cooperative targets. The photographs in column (a) show two different viewpoints of the scene that was scanned. The scene consisted of two stacked 12.5 mm thick plywood panels (resulting in an area measuring 900 mm tall and 1220 mm wide) covered in white retro-reflecting material. Approximately 275 mm in front of this, on the ground, was a 400 mm tall red retro-reflective roadside warning triangle. A 400 mm wide plywood panel, with a set of five red retro-reflecting triangles, was placed centrally about 300 mm behind the white boards. Each depth scan covered an area of approximately 1500 mm tall by 1220 mm wide using 15 × 12 pixels, resulting in a pixel-to-pixel spacing of approximately 100 mm in X and Y. Surface plots of the depth data obtained for per-pixel acquisition times of 2, 0.5, and 0.1 s are shown in columns (b), (c) and (d) respectively - each of these columns show two different views of the same data obtained with the specified per-pixel acquisition time, and the color shading is used to map depth.

Fig. 10
Fig. 10

Depth uncertainty measurements made using the gated-mode InGaAs/InP SPAD detector (the filled marker points) and measurements made previously using a free-running SNSPD (unfilled marker points). The measurements were acquired by scanning a 900 x 1220 x 12.5 mm thick, flat plywood panel at stand-off distances of 325 meters, 910 meters, and 4500 meters. The panel was scanned at near normal incidence - one side of the plywood panel was covered in white retro-reflective material, and the other side was uncovered. The graph shows the depth residuals, expressed as one standard deviation from the mean, for scans made using various per-pixel acquisition times on the plywood surface (325 m and 910 m) and the retro-reflective surface (910 m and 4500 m). The residuals were calculated using approximately 3600 pixels for the scans at 325 m, and approximately 300 pixels for the scans at both 910 m and 4500 m.

Metrics