Abstract

This work demonstrates the enhancement of light extraction of polymer light-emitting diodes (PLEDs) by incorporating a 12-fold photonic quasi crystal (PQC) in the device structure. Multi-exposure two-beam interference technique combined with inductively coupled plasma etching was employed to pattern a 12-fold PQC structure on the ITO film on a glass substrate of the diode. The air-hole coverage (AHC) and etching depth dependences of the light emitting performance of the 12-fold PQC patterned PLEDs were investigated. For AHC within the range between 6.4% and 32.3%, a nearly constant enhancement of the luminance efficiency of the PQC PLEDs was observed. On the other hand, the light emitting performance of the PQC PLEDs is very sensitive to the etching depth. The photoluminescence intensity of the PQC PLEDs increases monotonically with the etching depth. In contrast, the electro luminance efficiency shows a non-monotonic dependence on etching depth with a maximum occurring at 55 nm etching depth. The maximum improvement of luminance efficiency of the 12-fold PQC PLEDs reaches nearly 95% compared with an un-patterned PLED at an injection current of 110 mA.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
    [CrossRef]
  2. S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
    [CrossRef]
  3. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
    [CrossRef]
  4. G. E. Jabbour, J.-F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection,” Appl. Phys. Lett.80(11), 2026 (2002).
    [CrossRef]
  5. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
    [CrossRef]
  6. J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo,” Appl. Phys. Lett.72(21), 2660–2662 (1998).
    [CrossRef]
  7. E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007).
    [CrossRef]
  8. C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett.76(13), 1650–1652 (2000).
    [CrossRef]
  9. H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004).
    [CrossRef]
  10. Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
    [CrossRef]
  11. S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324–3327 (2002).
    [CrossRef]
  12. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Matake, S. Okutani, H. Sano, and K. Asakawa, “Improvement of the light extraction efficiency of top-emitting organic light-emitting diodes by a two-dimensional diffraction layer fabricated using self-assembled nanoparticles,” Appl. Opt.48(31), 5889–5896 (2009).
    [CrossRef] [PubMed]
  13. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
    [CrossRef]
  14. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
    [CrossRef]
  15. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
    [CrossRef]
  16. P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, Singapore 1987).
  17. Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, Berlin 1999).
  18. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
    [CrossRef] [PubMed]
  19. N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express14(22), 10746–10752 (2006).
    [CrossRef] [PubMed]
  20. N. D. Lai, J. H. Lin, and C. C. Hsu, “Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique,” Appl. Opt.46(23), 5645–5648 (2007).
    [CrossRef] [PubMed]
  21. A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
    [CrossRef]
  22. Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
    [CrossRef]
  23. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
    [CrossRef] [PubMed]
  24. X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
    [CrossRef]
  25. R. C. Gauthier and A. Ivanov, “Production of quasi-crystal template patterns using a dual beam multiple exposure technique,” Opt. Express12(6), 990–1003 (2004).
    [CrossRef] [PubMed]
  26. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express13(23), 9605–9611 (2005).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

2007 (3)

Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
[CrossRef]

E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007).
[CrossRef]

N. D. Lai, J. H. Lin, and C. C. Hsu, “Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique,” Appl. Opt.46(23), 5645–5648 (2007).
[CrossRef] [PubMed]

2006 (5)

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express14(22), 10746–10752 (2006).
[CrossRef] [PubMed]

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

2005 (1)

2004 (4)

R. C. Gauthier and A. Ivanov, “Production of quasi-crystal template patterns using a dual beam multiple exposure technique,” Opt. Express12(6), 990–1003 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004).
[CrossRef]

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

2003 (1)

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

2002 (2)

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324–3327 (2002).
[CrossRef]

G. E. Jabbour, J.-F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection,” Appl. Phys. Lett.80(11), 2026 (2002).
[CrossRef]

2000 (2)

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett.76(13), 1650–1652 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
[CrossRef] [PubMed]

1998 (1)

J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo,” Appl. Phys. Lett.72(21), 2660–2662 (1998).
[CrossRef]

1992 (1)

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

1990 (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Asakawa, K.

Asano, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Baumberg, J. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Benisty, H.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Bharathan, J.

J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo,” Appl. Phys. Lett.72(21), 2660–2662 (1998).
[CrossRef]

Bradley, D. D. C.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Brown, A. R.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Burroughes, J. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Cao, Y.

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

Chan, C. T.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Charlton, M. D. B.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Chen, K.-C.

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

Cheng, C.-H.

Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
[CrossRef]

Cheng, Y.-H.

Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
[CrossRef]

Cho, S.-H.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Colaneri, N.

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

David, A.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

DenBaars, S. P.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Do, Y. R.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Forrest, S. R.

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324–3327 (2002).
[CrossRef]

Friend, R. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Fujii, T.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Fujimoto, A.

Fujita, M.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Gauthier, R. C.

Gerken, M.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Geyer, U.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Gleiss, S.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Gustafsson, G.

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

Haavisto, K.

E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007).
[CrossRef]

Hauss, J.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Heeger, A. J.

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

Hiraoka, T.

Ho, Y. L.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004).
[CrossRef]

Holmes, A. B.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Hsu, C. C.

Hsu, C.-C.

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

Hu, C.-W.

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

Huang, H.-M.

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

Huang, Y. Y.

Huh, J.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Ishihara, K.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Ivanov, A.

Jabbour, G. E.

E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007).
[CrossRef]

G. E. Jabbour, J.-F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection,” Appl. Phys. Lett.80(11), 2026 (2002).
[CrossRef]

Kim, G.-H.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Kim, S.-H.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Kim, Y.-C.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Klavetter, F.

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

Kwok, H. S.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004).
[CrossRef]

Lai, N. D.

Lee, J. C. W.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Lee, M.-C. M.

Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
[CrossRef]

Lee, Y.-H.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Lee, Y.-J.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

Lemmer, U.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Li, J.

E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007).
[CrossRef]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Lu, M.-H.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett.76(13), 1650–1652 (2000).
[CrossRef]

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Madigan, C. F.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett.76(13), 1650–1652 (2000).
[CrossRef]

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

Matake, S.

Matioli, E.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Moller, S.

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324–3327 (2002).
[CrossRef]

Nakada, H.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Nakamura, S.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Nakanishi, T.

Netti, M. C.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Noda, S.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Ohata, H.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Okutani, S.

Pang, Y. K.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Parker, G. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Peng, H. J.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004).
[CrossRef]

Peyghambarian, N.

G. E. Jabbour, J.-F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection,” Appl. Phys. Lett.80(11), 2026 (2002).
[CrossRef]

Qin, Z. X.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

Riedel, B.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Sano, H.

Sharma, R.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Sheng, P.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Shimoji, N.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Sturm, J. C.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett.76(13), 1650–1652 (2000).
[CrossRef]

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Syao, K.-C.

Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
[CrossRef]

Tam, W. Y.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Treacy, G. M.

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

Tsiang, R. C.-C.

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

Tsuji, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Ueno, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Wang, J.-F.

G. E. Jabbour, J.-F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection,” Appl. Phys. Lett.80(11), 2026 (2002).
[CrossRef]

Wang, X.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Weisbuch, C.

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Williams, E. L.

E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007).
[CrossRef]

Wu, J.-L.

Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
[CrossRef]

Wu, S.-H.

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

Xu, J.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Xu, K.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

Yang, Y.

J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo,” Appl. Phys. Lett.72(21), 2660–2662 (1998).
[CrossRef]

Yang, Z. J.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

Yu, D. P.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

Yu, T. J.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

Yu, X. J.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004).
[CrossRef]

Zhang, B.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

Zhang, Z. S.

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

Zoorob, M. E.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006).
[CrossRef]

Adv. Mater. (1)

E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (10)

A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006).
[CrossRef]

Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003).
[CrossRef]

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004).
[CrossRef]

Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007).
[CrossRef]

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett.76(13), 1650–1652 (2000).
[CrossRef]

J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo,” Appl. Phys. Lett.72(21), 2660–2662 (1998).
[CrossRef]

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

G. E. Jabbour, J.-F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection,” Appl. Phys. Lett.80(11), 2026 (2002).
[CrossRef]

J. Appl. Phys. (3)

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004).
[CrossRef]

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324–3327 (2002).
[CrossRef]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Nature (3)

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000).
[CrossRef] [PubMed]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990).
[CrossRef]

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Other (2)

P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, Singapore 1987).

Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, Berlin 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematics of a 12-fold PQC PLED. (b) A 12-fold PQC structure fabricated on SU-8 photoresist on the top of an ITO glass. The inset is the zoom-in image of a small area of the SU-8 photoresist to show its 12-fold rotational symmetry. (c) A 12-fold PQC patterned on the ITO after dry etching, and the inset is its diffraction pattern, which possesses a 12-fold rotational symmetry. The depth of the air-holes is about 35 nm.

Fig. 2
Fig. 2

SEM images of 12-fold PQC patterns on the ITO layer with the air-hole coverage (AHC) of (a) 32.3% ± 2.7%, (b) 24.1% ± 3.2%, (c) 13.3% ± 2.0%, and (d) 6.4% ± 1.0%.

Fig. 3
Fig. 3

(a) Current-voltage characteristics, (b) luminance-voltage characteristics, and (c) luminance efficiency-current characteristics of the PQC PLEDs with different AHCs: 6.4% ± 1.0% (red circle), 13.3 ± 2.0% (blue upward triangle), 24.1 ± 3.2% (green downward triangle) and 32.3% ± 2.7% (magenta diamond), and an unpatterned PLED (black square). Inset of (a) is the EL spectra of PFO PLEDs embedding with and without a PQC structure.

Fig. 4
Fig. 4

AFM images of 12-fold PQC patterns on the ITO layer with the average depth of (a) 20 nm and (b) 55 nm obtained with etching time of 35 s and 75 s, respectively. The top panels in both (a) and (b) are the line profile scanned along the line segment shown in the image below. (c) The dependence of the AHC and etching depth on etching time.

Fig. 5
Fig. 5

(a) Luminance efficiency-current characteristics of different types of PFO PLEDs, including an unpatterned PLED and the PQC PLEDs with different etching depths. (b) Luminance efficiency improvement (left axis) and PL (right axis) enhancement as a function of the etching depth of the PQC PLEDs. (c) Enlargement of current-voltage characteristics curves of unpatterned PLED (black curve) and the PQC PLEDs with the etching depths of 55nm and 105nm (different color curves). Inset is the full I-V curves of (c).

Metrics