Abstract

We present a full-vectorial three-dimensional whispering-gallery-mode microcavity analysis technique. With this technique, optical properties such as resonance wavelength, quality factor, and electromagnetic field distribution of a microcavity in the presence of individual nanoparticle adsorption can be simulated with high accuracy, even in the presence of field distortion from plasmon effects at a wavelength close to plasmon resonance. This formulation is applicable to a wide variety of whispering-gallery related problems, such as waveguide to cavity coupling and full wave propagation analysis of a general whispering-gallery-mode microcavity where axisymmetry along the azimuthal direction is not required.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003).
    [CrossRef] [PubMed]
  3. S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010).
    [CrossRef] [PubMed]
  4. J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun.2, 1–8 (2010).
  5. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
    [CrossRef]
  6. Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
    [CrossRef] [PubMed]
  7. G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys.14, 115026 (2012).
    [CrossRef]
  8. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett.32, 3284–3286 (2007).
    [CrossRef] [PubMed]
  9. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A.67, 033806 (2003).
    [CrossRef]
  10. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature415, 621–623 (2002).
    [CrossRef] [PubMed]
  11. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21, 453–455 (1996).
    [CrossRef] [PubMed]
  12. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
    [CrossRef] [PubMed]
  13. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
    [CrossRef]
  14. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
    [CrossRef] [PubMed]
  15. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011).
    [CrossRef]
  16. M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011).
    [CrossRef]
  17. M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
    [CrossRef]
  18. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B20, 1937–1946 (2003).
    [CrossRef]
  19. M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys.15, 083006 (2013).
    [CrossRef]
  20. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
    [CrossRef]
  21. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011).
    [CrossRef]
  22. J. Y. Lee, X. Luo, and A. W. Poon, “Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators,” Opt. Express15, 14650–14666 (2007).
    [CrossRef] [PubMed]
  23. X. Luo and A. W. Poon, “Coupled spiral-shaped microdisk resonatorswith non-evanescent asymmetric inter-cavitycoupling,” Opt. Express15, 17313–17322 (2007).
    [CrossRef] [PubMed]
  24. A. Massaro, V. Errico, T. Stomeo, R. Cingolani, A. Salhi, A. Passaseo, and M. De Vittorio, “3-d fem modeling and fabrication of circular photonic crystal microcavity,” J. Lightwave Technol.26, 2960–2968 (2008).
    [CrossRef]
  25. A. Kaplan, M. Tomes, T. Carmon, M. Kozlov, O. Cohen, G. Bartal, and H. G. L. Schwefel, “Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid,” Opt. Express21, 14169–14180 (2013).
    [CrossRef] [PubMed]
  26. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A: Pure Appl. Opt.5, 53 (2003).
    [CrossRef]
  27. C.-L. Zou, Y. Yang, Y.-F. Xiao, C.-H. Dong, Z.-F. Han, and G.-C. Guo, “Accurately calculating high quality factor of whispering-gallery modes with boundary element method,” J. Opt. Soc. Am. B26, 2050–2053 (2009).
    [CrossRef]
  28. C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express19, 15669–15678 (2011).
    [CrossRef] [PubMed]
  29. T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol.21, 1793–1807 (2003).
    [CrossRef]
  30. T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A:19, 1197–1206 (2002).
    [CrossRef]
  31. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum. Electron.33, 327–341 (2001).
    [CrossRef]
  32. K. Jiang and W.-P. Huang, “Finite-difference-based mode-matching method for 3-d waveguide structures under semivectorial approximation,” J. Lightwave Technol.23, 4239–4248 (2005).
    [CrossRef]
  33. J. Mu and W.-P. Huang, “Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes,” Opt. Express16, 18152–18163 (2008).
    [CrossRef] [PubMed]
  34. J. Zheng and M. Yu, “Rigorous mode-matching method of circular to off-center rectangular side-coupled waveguide junctions for filter applications,” IEEE Trans. Microwave Theory Tech.55, 2365–2373 (2007).
    [CrossRef]
  35. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55, 1205–1208 (1965).
    [CrossRef]
  36. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt.12, 555–563 (1973).
    [CrossRef] [PubMed]
  37. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
    [CrossRef]
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter Mater. Phys.6, 4370–4379 (1972).
    [CrossRef]
  39. S. A. Maier, Plasmonics: Fundamentals and Applications(Berlin: Springer, 2007).

2013

2012

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys.14, 115026 (2012).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

2011

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011).
[CrossRef]

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011).
[CrossRef]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011).
[CrossRef]

C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express19, 15669–15678 (2011).
[CrossRef] [PubMed]

2010

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010).
[CrossRef] [PubMed]

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun.2, 1–8 (2010).

2009

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

C.-L. Zou, Y. Yang, Y.-F. Xiao, C.-H. Dong, Z.-F. Han, and G.-C. Guo, “Accurately calculating high quality factor of whispering-gallery modes with boundary element method,” J. Opt. Soc. Am. B26, 2050–2053 (2009).
[CrossRef]

2008

2007

J. Y. Lee, X. Luo, and A. W. Poon, “Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators,” Opt. Express15, 14650–14666 (2007).
[CrossRef] [PubMed]

X. Luo and A. W. Poon, “Coupled spiral-shaped microdisk resonatorswith non-evanescent asymmetric inter-cavitycoupling,” Opt. Express15, 17313–17322 (2007).
[CrossRef] [PubMed]

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
[CrossRef]

J. Zheng and M. Yu, “Rigorous mode-matching method of circular to off-center rectangular side-coupled waveguide junctions for filter applications,” IEEE Trans. Microwave Theory Tech.55, 2365–2373 (2007).
[CrossRef]

M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett.32, 3284–3286 (2007).
[CrossRef] [PubMed]

2005

2003

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol.21, 1793–1807 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A: Pure Appl. Opt.5, 53 (2003).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A.67, 033806 (2003).
[CrossRef]

K. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B20, 1937–1946 (2003).
[CrossRef]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

2002

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature415, 621–623 (2002).
[CrossRef] [PubMed]

T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A:19, 1197–1206 (2002).
[CrossRef]

2001

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum. Electron.33, 327–341 (2001).
[CrossRef]

1996

1973

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter Mater. Phys.6, 4370–4379 (1972).
[CrossRef]

1965

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003).
[CrossRef] [PubMed]

Arnold, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011).
[CrossRef]

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B20, 1937–1946 (2003).
[CrossRef]

Baets, R.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum. Electron.33, 327–341 (2001).
[CrossRef]

Bahl, G.

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys.14, 115026 (2012).
[CrossRef]

Bartal, G.

Bienstman, P.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum. Electron.33, 327–341 (2001).
[CrossRef]

Boriskina, S.

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011).
[CrossRef]

Boriskina, S. V.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Bowen, W. P.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011).
[CrossRef]

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A.67, 033806 (2003).
[CrossRef]

Carmon, T.

Cetinkaya, M.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter Mater. Phys.6, 4370–4379 (1972).
[CrossRef]

Cingolani, R.

Cohen, O.

De Vittorio, M.

Demirel, M.

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011).
[CrossRef]

Demirel, M. C.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Dominguez-Juarez, J.

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun.2, 1–8 (2010).

Dong, C.-H.

Errico, V.

Fan, X.

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys.14, 115026 (2012).
[CrossRef]

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

Fauchet, P. M.

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

Foreman, M. R.

M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys.15, 083006 (2013).
[CrossRef]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

Frye-Mason, G.

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

Gorodetsky, M. L.

Guo, G.-C.

Hale, G. M.

Han, Z.-F.

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

Holler, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

Hu, X.-H.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

Huang, W.-P.

Ilchenko, V. S.

Ja, S.-j.

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

Jiang, K.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter Mater. Phys.6, 4370–4379 (1972).
[CrossRef]

Kaplan, A.

Khoshsima, M.

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

Kimble, H. J.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A.67, 033806 (2003).
[CrossRef]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003).
[CrossRef] [PubMed]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature415, 621–623 (2002).
[CrossRef] [PubMed]

Knittel, J.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011).
[CrossRef]

Kozlov, M.

Kozyreff, G.

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun.2, 1–8 (2010).

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

Lee, J. Y.

Lee, M. R.

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

Liu, J.

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol.21, 1793–1807 (2003).
[CrossRef]

T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A:19, 1197–1206 (2002).
[CrossRef]

Luo, X.

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications(Berlin: Springer, 2007).

Malitson, I. H.

Martorell, J.

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun.2, 1–8 (2010).

Massaro, A.

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

Mu, J.

Nishida, Y.

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010).
[CrossRef] [PubMed]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
[CrossRef]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

Passaseo, A.

Poon, A. W.

Querry, M. R.

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011).
[CrossRef]

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010).
[CrossRef] [PubMed]

Salhi, A.

Santiago-Cordoba, M.

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011).
[CrossRef]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Savchenkov, A. A.

Schwefel, H. G. L.

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011).
[CrossRef]

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010).
[CrossRef] [PubMed]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature415, 621–623 (2002).
[CrossRef] [PubMed]

Stomeo, T.

Sun, F.-W.

Sun, Y.

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

Swaim, J. D.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011).
[CrossRef]

Teraoka, I.

Thompson, A. K.

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

Tomes, M.

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003).
[CrossRef] [PubMed]

K. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature415, 621–623 (2002).
[CrossRef] [PubMed]

Vollmer, F.

M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys.15, 083006 (2013).
[CrossRef]

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B20, 1937–1946 (2003).
[CrossRef]

Wiersig, J.

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A: Pure Appl. Opt.5, 53 (2003).
[CrossRef]

Xiao, Y.-F.

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

Yang, Y.

Yevick, D.

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol.21, 1793–1807 (2003).
[CrossRef]

T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A:19, 1197–1206 (2002).
[CrossRef]

Yu, M.

J. Zheng and M. Yu, “Rigorous mode-matching method of circular to off-center rectangular side-coupled waveguide junctions for filter applications,” IEEE Trans. Microwave Theory Tech.55, 2365–2373 (2007).
[CrossRef]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

Zheng, J.

J. Zheng and M. Yu, “Rigorous mode-matching method of circular to off-center rectangular side-coupled waveguide junctions for filter applications,” IEEE Trans. Microwave Theory Tech.55, 2365–2373 (2007).
[CrossRef]

Zou, C.-L.

Analyst

Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011).
[CrossRef]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011).
[CrossRef]

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
[CrossRef]

J. Zheng and M. Yu, “Rigorous mode-matching method of circular to off-center rectangular side-coupled waveguide junctions for filter applications,” IEEE Trans. Microwave Theory Tech.55, 2365–2373 (2007).
[CrossRef]

J. Biophotonics

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

J. Light-wave Technol.

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol.21, 1793–1807 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. A: Pure Appl. Opt.

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A: Pure Appl. Opt.5, 53 (2003).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A:

T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A:19, 1197–1206 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Commun.

J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun.2, 1–8 (2010).

Nat. Photonics

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012).
[CrossRef]

Nature

K. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature415, 621–623 (2002).
[CrossRef] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009).
[CrossRef] [PubMed]

New J. Phys.

M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys.15, 083006 (2013).
[CrossRef]

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys.14, 115026 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum. Electron.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum. Electron.33, 327–341 (2001).
[CrossRef]

Phys. Med. Biol.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003).
[CrossRef]

Phys. Rev. A.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A.67, 033806 (2003).
[CrossRef]

Phys. Rev. B: Condens. Matter Mater. Phys.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter Mater. Phys.6, 4370–4379 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011).
[CrossRef]

Rev. Sci. Instrum.

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010).
[CrossRef] [PubMed]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications(Berlin: Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1:

(a) Light circulating along the azimuthal direction in a whispering-gallery-mode microcavity (e.g. a silica microtoroid). A cylindrical coordinate system is used for modelling purposes. (b) Light propagating from ϕ to ϕ + δϕ as it passes by a bound particle.

Fig. 2:
Fig. 2:

The fundamental mode intensity distribution of a silica microtoroid with (a) a polystyrene bead and (b) a gold bead bound to the equator at a 633-nm wavelength. The modes are plotted at the azimuthal cross section where the center of the bead is located. The insets provide a zoomed-in view of the intensity distribution around the beads.

Fig. 3:
Fig. 3:

The real and imaginary part of the mode order m along the propagation direction when (a) a 50-nm radius PS bead and (b) a 50-nm radius Au bead are placed at ϕ = 0.

Fig. 4:
Fig. 4:

Shift and Q factor vs. grid spacing δϕ along the ϕ̂ direction for a 50-nm radius gold bead. The last point is omitted for the creation of the line of best fit.

Fig. 5:
Fig. 5:

Binding shift and Q factor degradation due to (a) a bound PS sphere and (b) a bound Au sphere for different bead radii.

Fig. 6:
Fig. 6:

Cavity resonance shifts as a function of wavelengths for a 25-nm radius gold bead. The insert shows the excess polarizability of the bead at different wavelengths.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( ρ , z , ϕ ) = A ˜ ( ϕ ) e ˜ ^ ( ρ , z )
[ 2 ρ 2 + 1 ρ ρ + 2 z 2 + ( k 0 2 n ˜ 2 ( ρ , z ) m ˜ 2 ρ 2 ) ] e ˜ ^ ( ρ , z ) = 0
1 Q ˜ tot = 2 m ˜ i M = 1 Q ˜ abs + 1 Q ˜ rad + 1 Q ˜ surf + 1 Q ˜ couple m ˜ i = m ˜ abs + m ˜ rad + m ˜ surf + m ˜ couple
E ( ρ , z , ϕ 0 ) = A ( ϕ 0 ) e ^ ( ρ , z , ϕ 0 )
[ 2 ρ 2 + 1 ρ ρ + 2 z 2 + ( k 0 2 n 2 ( ρ , z , ϕ 0 ) m ( ϕ 0 ) 2 ρ 2 ) ] e ^ ( ρ , z , ϕ 0 ) = 0
E ( ρ , z , ϕ 0 + δ ϕ ) = A ( ϕ 0 ) e ^ ( ρ , z , ϕ 0 ) e j m ( ϕ 0 ) δ ϕ
m r ( ϕ 0 ) = M λ r ( ϕ 0 ) λ 0 m i ( ϕ 0 ) = m abs ( ϕ 0 ) + m rad ( ϕ 0 )
E ( ρ , z , ϕ 0 + δ ϕ ) = A ( ϕ 0 + δ ϕ ) e ^ ( ρ , z , ϕ 0 + δ ϕ )
A ( ϕ 0 + δ ϕ ) = A ( ϕ 0 ) e j [ M + δ m ( ϕ ) ] δ ϕ
m m ( ϕ 0 ) = lim δ ϕ 0 1 δ ϕ ln [ n r ( ρ , z , ϕ 0 + δ ϕ ) 2 η 0 e ^ * ( ρ , z , ϕ 0 + δ ϕ ) e ^ ( ρ , z , ϕ ) d σ ]
E ( ρ , z , ϕ 0 ) = A ( 0 ) e j [ M ϕ 0 + ϕ = 0 ϕ 0 δ m ( ϕ ) d ϕ ] e ^ ( ρ , z , ϕ 0 )
ϕ = 0 2 π m r ( ϕ ) d ϕ = 2 M π
λ res = 0 2 π λ r ( ϕ ) d ϕ 2 π
1 Q tot = 2 0 2 π [ m m ( ϕ ) + m abs ( ϕ ) + m rad ( ϕ ) ] d ϕ 2 π M = 1 Q m + 1 Q abs + 1 Q rad
1 Q coupling = 2 ϕ 0 ϕ 0 + Δ ϕ m m ( ϕ ) d ϕ 2 π M
Δ λ = ϕ 0 ϕ 0 + Δ ϕ [ λ r ( ϕ ) λ ˜ res ] d ϕ 2 π
Δ λ = i = 1 N ϕ i ϕ i + Δ ϕ i [ λ r ( ϕ ) λ ˜ res ] d ϕ 2 π
1 Q tot 1 Q ˜ tot = 2 i = 1 N ϕ i ϕ i + Δ ϕ i [ m m ( ϕ ) + m abs ( ϕ ) + m rad ( ϕ ) m ˜ i ] d ϕ 2 π M

Metrics