Abstract

Advances in fiber optics and CCD technology in the last decades have allowed for a large reduction in outer diameter (from centimeters to submillimeter) of endoscopes. Attempts to reduce the outer diameter even further, however, have been hindered by the trade-off, inherent to conventional endoscopes, between outer diameter, resolution and field of view. Several groups have shown the feasibility of further miniaturization towards so called micro-endoscopes, albeit at the cost of a very reduced field of view. In previous work we presented the design of an ultra-high NA (0.928) Coherent FiberBundle (CFB) that, in combination with proximal wave front shaping, could be used to circumvent this trade-off thus paving the way for even smaller endoscopes. In this paper we analyze how the modal properties of such an ultra-high NA CFB determine the required input field to achieve any desired output field. We use the periodicity of the hexagonal lattice which characterizes a CFB, to define a unit cell of which we analyze the eigen-modes. During the modal analysis, we also take into account realistic variations in lattice constant, core size and core shape due to the limitations of the fabrication technology. Realistic values for these types of fabrication-induced irregularities were obtained via SEM images of a CFB fabricated according to the aforementioned design. The presence of these irregularities results, for a desired output, in the required input to be different from the required input for a defect-free CFB. We find that of the different types of fabrication-induced irregularities present in the CFB, variations in core ellipticity have the biggest impact on the required input for a given desired output.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. A. Wickham, “Endoscopic surgery,” Br. Med. Bull.42(3), 221–339 (1986), http://bmb.oxfordjournals.org/content/42/3/221.full.pdf .
    [PubMed]
  2. S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J Biophotonics4(7-8), 471–481 (2011).
    [CrossRef] [PubMed]
  3. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
    [CrossRef] [PubMed]
  4. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008).
    [CrossRef] [PubMed]
  5. H. C. Park, C. Song, M. Kang, Y. Jeong, and K. H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett.37(13), 2673–2675 (2012).
    [CrossRef] [PubMed]
  6. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009).
    [CrossRef] [PubMed]
  7. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett.36(9), 1707–1709 (2011).
    [CrossRef] [PubMed]
  8. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express19(1), 247–254 (2011).
    [CrossRef] [PubMed]
  9. T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Comm. 3, Article number: 1027 (2012). http://www.nature.com/ncomms/journal/v3/n8/full/ncomms2024.html
  10. S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012).
    [CrossRef]
  11. I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
    [CrossRef]
  12. E. Brookner, “Phased-array radars: Past, astounding breakthroughs and future trends,” Microwave J.51(1), 30 (2008).
  13. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
    [CrossRef]
  14. Schott website: http://www.schott.com/advanced_optics/english/abbe_datasheets/schott_datasheet_sf6.pdf?highlighted_text=SF6
  15. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
    [CrossRef] [PubMed]
  16. T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst., Man, Cybern. Syst.8(8), 630–632 (1978).
  17. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
    [CrossRef]
  18. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express19(20), 18871–18884 (2011).
    [CrossRef] [PubMed]
  19. V. Ramaswamy, W. G. French, and R. D. Standley, “Polarization characteristics of noncircular core single-mode fibers,” Appl. Opt.17(18), 3014–3017 (1978).
    [CrossRef] [PubMed]
  20. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express20(3), 2967–2973 (2012).
    [CrossRef] [PubMed]
  21. S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiberbundle part II: point spread function analysis,” Opt. Express in press (2013).

2013 (1)

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiberbundle part II: point spread function analysis,” Opt. Express in press (2013).

2012 (5)

S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012).
[CrossRef]

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express20(3), 2967–2973 (2012).
[CrossRef] [PubMed]

H. C. Park, C. Song, M. Kang, Y. Jeong, and K. H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett.37(13), 2673–2675 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (2)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

2009 (1)

2008 (3)

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008).
[CrossRef] [PubMed]

E. Brookner, “Phased-array radars: Past, astounding breakthroughs and future trends,” Microwave J.51(1), 30 (2008).

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

1986 (1)

J. E. A. Wickham, “Endoscopic surgery,” Br. Med. Bull.42(3), 221–339 (1986), http://bmb.oxfordjournals.org/content/42/3/221.full.pdf .
[PubMed]

1978 (2)

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst., Man, Cybern. Syst.8(8), 630–632 (1978).

V. Ramaswamy, W. G. French, and R. D. Standley, “Polarization characteristics of noncircular core single-mode fibers,” Appl. Opt.17(18), 3014–3017 (1978).
[CrossRef] [PubMed]

Aranyosiova, M.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Ben-Yakar, A.

Bianchi, S.

Brookner, E.

E. Brookner, “Phased-array radars: Past, astounding breakthroughs and future trends,” Microwave J.51(1), 30 (2008).

Buczynski, R.

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiberbundle part II: point spread function analysis,” Opt. Express in press (2013).

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Bugar, I.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Calvard, S.

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst., Man, Cybern. Syst.8(8), 630–632 (1978).

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Chen, P.

Cižmár, T.

Debaes, C.

S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012).
[CrossRef]

Dholakia, K.

Di Leonardo, R.

Dunsby, C.

Durr, N. J.

Elahi, S. F.

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J Biophotonics4(7-8), 471–481 (2011).
[CrossRef] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

French, P. M. W.

French, W. G.

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Heyvaert, S.

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiberbundle part II: point spread function analysis,” Opt. Express in press (2013).

S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012).
[CrossRef]

Hoy, C. L.

Jeong, K. H.

Jeong, Y.

Kang, M.

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Kujawa, I.

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiberbundle part II: point spread function analysis,” Opt. Express in press (2013).

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Leng, Y.

Li, X.

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Lorenc, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Martynkien, T.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

Moore, J. P.

Neil, M. A. A.

Ottevaere, H.

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiberbundle part II: point spread function analysis,” Opt. Express in press (2013).

S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012).
[CrossRef]

Park, H. C.

Paterson, C.

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Piyawattanametha, W.

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Pysz, D.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

Ra, H.

Ramaswamy, V.

Ridler, T. W.

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst., Man, Cybern. Syst.8(8), 630–632 (1978).

Rogge, M. D.

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Sadowski, M.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Solgaard, O.

Song, C.

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Standley, R. D.

Stepien, R.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Taghizadeh, M. R.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

Thienpont, H.

S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiberbundle part II: point spread function analysis,” Opt. Express in press (2013).

S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012).
[CrossRef]

Thompson, A. J.

Tinevez, J. Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Velic, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Vincze, A.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Waddie, A.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

Wang, T. D.

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J Biophotonics4(7-8), 471–481 (2011).
[CrossRef] [PubMed]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Wickham, J. E. A.

J. E. A. Wickham, “Endoscopic surgery,” Br. Med. Bull.42(3), 221–339 (1986), http://bmb.oxfordjournals.org/content/42/3/221.full.pdf .
[PubMed]

Wu, Y.

Xi, J.

Appl. Opt. (1)

Appl. Phys. B (1)

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008).
[CrossRef]

Br. Med. Bull. (1)

J. E. A. Wickham, “Endoscopic surgery,” Br. Med. Bull.42(3), 221–339 (1986), http://bmb.oxfordjournals.org/content/42/3/221.full.pdf .
[PubMed]

IEEE Trans. Syst., Man, Cybern. Syst. (1)

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Trans. Syst., Man, Cybern. Syst.8(8), 630–632 (1978).

J Biophotonics (2)

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J Biophotonics4(7-8), 471–481 (2011).
[CrossRef] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Microwave J. (1)

E. Brookner, “Phased-array radars: Past, astounding breakthroughs and future trends,” Microwave J.51(1), 30 (2008).

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (1)

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol.18(4), 220–225 (2012).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE 8429, Optical Modelling and Design (1)

S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012).
[CrossRef]

Other (2)

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Comm. 3, Article number: 1027 (2012). http://www.nature.com/ncomms/journal/v3/n8/full/ncomms2024.html

Schott website: http://www.schott.com/advanced_optics/english/abbe_datasheets/schott_datasheet_sf6.pdf?highlighted_text=SF6

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Calculation of the necessary phase of each single mode fiber/core is achieved via sampling of the continuous wave front with sampling distance equal to the lattice constant Λ.

Fig. 2
Fig. 2

SEM images of one of the prototypes with magnification 500 (a), 5000 (b) and 10000 (c). The dark, slanted segment on the left image was caused by the ceramic knife used to introduce a fracture necessary for cleaving the CFB.

Fig. 3
Fig. 3

To extract data from the SEM images, the raw SEM image (a) is filtered (b) and converted to a black-and-white image (c). The numbered outlines in (d) represent the cores of which the data will be extracted. Dust particles or cores which are only partially visible in the SEM image are excluded as can be seen by comparing (c) with (d).

Fig. 4
Fig. 4

Schematic of the method used to determine the necessary input field E proximal in order to have a desired E i exiting the CFB.

Fig. 5
Fig. 5

Unit cell for a CFB without defects.

Fig. 6
Fig. 6

|Ex|, |Ey| and |Ez| of eigen-mode 1 ((a)-(c) respectively) and eigen-mode 18 ((d)-(f) respectively). The eigen-modes were numbered in decreasing order of propagation constant.

Fig. 7
Fig. 7

| E x | and E x of the desired E i .

Fig. 8
Fig. 8

The top row shows | E x | and E x of E distal while the bottom row shows | E y | (left) and | E z | (right).

Fig. 9
Fig. 9

Shown here is the input E proximal required to have the desired E distal (shown in Fig. 7) exit an ideal CFB of length L = 0.5m.

Fig. 10
Fig. 10

Shown here is E ˜ distal , obtained by taking E proximal from Fig. 8, setting its Ey and Ez equal to 0 and propagating the resulting E ˜ proximal back to the distal end.

Fig. 11
Fig. 11

The differences between the components of E distal and E ˜ distal shown here, are small and so when coupling light into the proximal end, linearly polarized light can be used. Note that the figures were scaled relative to those in Fig. 8.

Fig. 12
Fig. 12

The E proximal for a CFB of length L = 0.5m with different core diameters (with the average and standard deviation taken from Table 3) shown here, is markedly different from the E proximal of an ideal CFB shown in Fig. 8 due to high Δneff/Δdiameter.

Fig. 13
Fig. 13

The E ˜ distal for a CFB of length L = 0.5m with different core diameters obtained by taking E proximal from Fig. 12, assuming Ey and Ez are 0, and propagating it back to the distal end, is still a good approximation for the desired output of Fig. 7.

Fig. 14
Fig. 14

The E proximal for a CFB of length L = 0.5m with randomly oriented elliptical cores diameters (core area and ellipticity taken from the prototype as shown in Table 3) shown here, has a state of polarization which varies from core to core.

Fig. 15
Fig. 15

The E proximal for a CFB of length L = 0.5m with elliptical cores from Fig. 12 aligned along the x-axis has a negligible Ey (since only one eigen-mode per core is excited) as opposed to the E proximal for randomly oriented elliptical cores.

Fig. 16
Fig. 16

The E ˜ distal for a CFB of length L = 0.5m with aligned elliptical cores, is still a good approximation for the desired output of Fig. 7.

Fig. 17
Fig. 17

Birefringence as function of the ellipticity (or ratio between major and minor axis) for elliptical cores with the same area as a circular core with diameter 0.55μm.

Fig. 18
Fig. 18

The E proximal for a CFB of length L = 0.5m with circular cores from Fig. 5 on an irregular lattice. Size of the displacement was determined by a Gaussian pdf with σ = 0.036μm and direction of the displacement according to uniform pdf in the [0,2π] interval.

Fig. 19
Fig. 19

The E proximal for a CFB of length L = 0.5m with combined fabrication irregularities (core area, core ellipticity and lattice irregularities).

Fig. 20
Fig. 20

The E proximal for a CFB of length L = 0.5m with combined fabrication irregularities (core area, core ellipticity and lattice irregularities) but with ellipses aligned along a common axis.

Tables (3)

Tables Icon

Table 1 Design Parameters of the CFB from [10]

Tables Icon

Table 2 Data Output for Cores 1 through 5 from Fig. 3(d) Using the ‘Analyze Particle’ Function

Tables Icon

Table 3 Statistics on Core Size, Core Shape and Lattice Constant for the Prototype CFB

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin(θ)= λ a
E distal = q=1 N 0 χ q E q 0 ,
E proximal = q=1 N 0 χ q E q 0 e j β q L .

Metrics