Abstract

Two electron-beams’ interaction in a sandwich structure composed of a bi-grating and a sub-wavelength holes array is suggested to generate THz radiation in this paper. It shows that this system takes advantage of both bi-grating and sub-wavelength holes array structures. The results demonstrate that surface waves on a bi-grating can couple with mimicking surface plasmons of a sub-wavelength holes array so that the wave-coupling is strong and the field intensity is high in this structure. Moreover, compared with the interaction in the bi-grating structure and sub-wavelength holes array structure, respectively, it shows that in this composite system the two electron-beams’ interaction is more efficient and the modulation depth and radiation intensity have been enhanced significantly. The modulation depth and efficiency can reach 22% and 4%, respectively, and the starting current density is only 12 A/cm2. This radiation system may provide good opportunities for development of multi-electron beam-driven THz radiation sources.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H.  Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [CrossRef]
  2. M.  Thumm, “2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for ITER,” Terahertz Sci. Technol. 3, 1–20 (2010).
  3. Q.  Hu, “Terahertz quantum cascade lasers and real-time T-rays imaging at video rate,” Terahertz Sci. Technol. 2, 120–130 (2009).
  4. R.  Kleiner, “Applied physics. Filling the terahertz gap,” Science 318, 1254–1255 (2007).
    [CrossRef] [PubMed]
  5. M.  Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  6. D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006).
    [CrossRef]
  7. Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
    [CrossRef]
  8. A. S.  Kesar, “Smith–Purcell radiation from a charge moving above a grating of finite length and width,” Phys. Rev. ST Accel. Beams 13(2), 022804–022811 (2010).
    [CrossRef]
  9. Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
    [CrossRef]
  10. C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010).
    [CrossRef]
  11. J. B.  Pendry, L.  Martín-Moreno, F. J.  Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  12. S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
    [CrossRef] [PubMed]
  13. H. J.  Lezec, T.  Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  14. K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  15. F. J.  García de Abajo, R.  Gómez-Medina, J. J.  Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016608–016611 (2005).
    [CrossRef] [PubMed]
  16. Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
    [CrossRef] [PubMed]
  17. D. R.  Smith, J. B.  Pendry, M. C. K.  Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  18. W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  19. A. P.  Hibbins, B. R.  Evans, J. R.  Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  20. S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  21. Y. X.  Zhang, L.  Dong, “Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron beams,” Opt. Express 20(20), 22627–22635 (2012).
    [CrossRef] [PubMed]
  22. Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012).
    [CrossRef]
  23. S. G. Liu, ed., Introduction to Microwave Electronics (Industry Press, 1985).
  24. K. Q. Zhang and D. J. Li, eds., Electromagnetic Theory for Microwaves and Optoelectronics (Publishing House of Electronics Industry, 2001).
  25. D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006).
    [CrossRef]
  26. J. A.  Dayton, C. L.  Kory, G. T.  Mearini, “Diamond-based sub millimeter backward wave oscillator,” Proc. SPIE 5584, 67–76 (2004).
    [CrossRef]

2012

Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012).
[CrossRef]

Y. X.  Zhang, L.  Dong, “Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron beams,” Opt. Express 20(20), 22627–22635 (2012).
[CrossRef] [PubMed]

2010

M.  Thumm, “2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for ITER,” Terahertz Sci. Technol. 3, 1–20 (2010).

A. S.  Kesar, “Smith–Purcell radiation from a charge moving above a grating of finite length and width,” Phys. Rev. ST Accel. Beams 13(2), 022804–022811 (2010).
[CrossRef]

C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010).
[CrossRef]

2009

S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
[CrossRef] [PubMed]

Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
[CrossRef]

Q.  Hu, “Terahertz quantum cascade lasers and real-time T-rays imaging at video rate,” Terahertz Sci. Technol. 2, 120–130 (2009).

2007

R.  Kleiner, “Applied physics. Filling the terahertz gap,” Science 318, 1254–1255 (2007).
[CrossRef] [PubMed]

M.  Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

2006

D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006).
[CrossRef]

D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006).
[CrossRef]

2005

F. J.  García de Abajo, R.  Gómez-Medina, J. J.  Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016608–016611 (2005).
[CrossRef] [PubMed]

A. P.  Hibbins, B. R.  Evans, J. R.  Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

2004

D. R.  Smith, J. B.  Pendry, M. C. K.  Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

J. B.  Pendry, L.  Martín-Moreno, F. J.  Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. A.  Dayton, C. L.  Kory, G. T.  Mearini, “Diamond-based sub millimeter backward wave oscillator,” Proc. SPIE 5584, 67–76 (2004).
[CrossRef]

H. J.  Lezec, T.  Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

2003

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002

P. H.  Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

2001

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Barnes, W. L.

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Dayton, J. A.

J. A.  Dayton, C. L.  Kory, G. T.  Mearini, “Diamond-based sub millimeter backward wave oscillator,” Proc. SPIE 5584, 67–76 (2004).
[CrossRef]

Dereux, A.

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dong, L.

Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012).
[CrossRef]

Y. X.  Zhang, L.  Dong, “Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron beams,” Opt. Express 20(20), 22627–22635 (2012).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Enoch, S.

K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Erland, J.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Evans, B. R.

A. P.  Hibbins, B. R.  Evans, J. R.  Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J.  García de Abajo, R.  Gómez-Medina, J. J.  Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016608–016611 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B.  Pendry, L.  Martín-Moreno, F. J.  Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Gómez-Medina, R.

F. J.  García de Abajo, R.  Gómez-Medina, J. J.  Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016608–016611 (2005).
[CrossRef] [PubMed]

Hibbins, A. P.

A. P.  Hibbins, B. R.  Evans, J. R.  Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Hu, M.

Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
[CrossRef]

S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
[CrossRef] [PubMed]

Hu, Q.

Q.  Hu, “Terahertz quantum cascade lasers and real-time T-rays imaging at video rate,” Terahertz Sci. Technol. 2, 120–130 (2009).

Hvam, J. M.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Imasaki, K.

D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006).
[CrossRef]

D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006).
[CrossRef]

Jang, K. H.

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

Kesar, A. S.

A. S.  Kesar, “Smith–Purcell radiation from a charge moving above a grating of finite length and width,” Phys. Rev. ST Accel. Beams 13(2), 022804–022811 (2010).
[CrossRef]

Kleiner, R.

R.  Kleiner, “Applied physics. Filling the terahertz gap,” Science 318, 1254–1255 (2007).
[CrossRef] [PubMed]

Koerkamp, K. J.

K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kory, C. L.

J. A.  Dayton, C. L.  Kory, G. T.  Mearini, “Diamond-based sub millimeter backward wave oscillator,” Proc. SPIE 5584, 67–76 (2004).
[CrossRef]

Kuipers, L.

K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Leosson, K.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Lezec, H. J.

Li, D.

D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006).
[CrossRef]

D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006).
[CrossRef]

Li, Y. B.

S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
[CrossRef] [PubMed]

Lin, M. C.

C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010).
[CrossRef]

Liu, S.

Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
[CrossRef]

Liu, S. G.

Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012).
[CrossRef]

S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B.  Pendry, L.  Martín-Moreno, F. J.  Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Masayoshi, M.

M.  Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Mearini, G. T.

J. A.  Dayton, C. L.  Kory, G. T.  Mearini, “Diamond-based sub millimeter backward wave oscillator,” Proc. SPIE 5584, 67–76 (2004).
[CrossRef]

Park, G. S.

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006).
[CrossRef]

D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006).
[CrossRef]

Pendry, J. B.

J. B.  Pendry, L.  Martín-Moreno, F. J.  Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

D. R.  Smith, J. B.  Pendry, M. C. K.  Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Piot, P.

C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010).
[CrossRef]

Prokop, C.

C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010).
[CrossRef]

Sáenz, J. J.

F. J.  García de Abajo, R.  Gómez-Medina, J. J.  Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016608–016611 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

A. P.  Hibbins, B. R.  Evans, J. R.  Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Segerink, F. B.

K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Shin, Y. M.

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

Siegel, P. H.

P. H.  Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Skovgaard, P. M.

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. R.  Smith, J. B.  Pendry, M. C. K.  Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

So, J. K.

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

Srivastava, A.

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

Stoltz, P.

C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010).
[CrossRef]

Thio, T.

Thumm, M.

M.  Thumm, “2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for ITER,” Terahertz Sci. Technol. 3, 1–20 (2010).

van Hulst, N. F.

K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R.  Smith, J. B.  Pendry, M. C. K.  Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Won, J. H.

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

Yang, Y.

Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
[CrossRef]

Yang, Z.

D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006).
[CrossRef]

D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006).
[CrossRef]

Zhang, Y.

Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
[CrossRef]

Zhang, Y. X.

Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012).
[CrossRef]

Y. X.  Zhang, L.  Dong, “Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron beams,” Opt. Express 20(20), 22627–22635 (2012).
[CrossRef] [PubMed]

S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
[CrossRef] [PubMed]

Zhong, R.

Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
[CrossRef]

Zhong, R. B.

S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
[CrossRef] [PubMed]

Zhou, Y. C.

Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012).
[CrossRef]

Appl. Phys. Lett.

D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006).
[CrossRef]

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007).
[CrossRef]

C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010).
[CrossRef]

Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

P. H.  Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

J. Phys. D

Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009).
[CrossRef]

Nat. Photonics

M.  Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Nature

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009).
[CrossRef] [PubMed]

F. J.  García de Abajo, R.  Gómez-Medina, J. J.  Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016608–016611 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007).
[CrossRef] [PubMed]

K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Phys. Rev. ST Accel. Beams

D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006).
[CrossRef]

A. S.  Kesar, “Smith–Purcell radiation from a charge moving above a grating of finite length and width,” Phys. Rev. ST Accel. Beams 13(2), 022804–022811 (2010).
[CrossRef]

Proc. SPIE

J. A.  Dayton, C. L.  Kory, G. T.  Mearini, “Diamond-based sub millimeter backward wave oscillator,” Proc. SPIE 5584, 67–76 (2004).
[CrossRef]

Science

J. B.  Pendry, L.  Martín-Moreno, F. J.  Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

R.  Kleiner, “Applied physics. Filling the terahertz gap,” Science 318, 1254–1255 (2007).
[CrossRef] [PubMed]

D. R.  Smith, J. B.  Pendry, M. C. K.  Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

A. P.  Hibbins, B. R.  Evans, J. R.  Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Terahertz Sci. Technol.

M.  Thumm, “2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for ITER,” Terahertz Sci. Technol. 3, 1–20 (2010).

Q.  Hu, “Terahertz quantum cascade lasers and real-time T-rays imaging at video rate,” Terahertz Sci. Technol. 2, 120–130 (2009).

Other

S. G. Liu, ed., Introduction to Microwave Electronics (Industry Press, 1985).

K. Q. Zhang and D. J. Li, eds., Electromagnetic Theory for Microwaves and Optoelectronics (Publishing House of Electronics Industry, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) 3-D Composite structure; (b) the section structure in 2-D.

Fig. 2
Fig. 2

Electric field distribution in different structures: (a) electric field distribution of MSP of SHA and surface wave of grating respectively; (b) electric field distribution of the mode CMSP in the CSS.

Fig. 3
Fig. 3

Dispersion relation of the modes: (a) the dispersion lines of bi-grating and SHA respectively; (b) the dispersion line of the CMSP mode in the CSS; (c) the dispersion line of the CMSP mode with different size of e-beam channel.

Fig. 4
Fig. 4

Simulation results of the modes in the CSS with different e-beam channel size g: (a) g=100 um; (b) g=150 um; (c) g=200 um.

Fig. 5
Fig. 5

Sketch map of the interaction: (a) composite structure with two e-beams; (b) the section structure in 2-D. Region III, g e <x< g e +p , is the e-beam.

Fig. 6
Fig. 6

Growth rate of the beam-wave interaction, where ωp is the plasma frequency of the e-beams, which is used to normalize the growth rate ωi. (a) The scheme of electron beam–CMSP interaction around the intersection between the dispersion line of the e-beam and the CMSP mode; the e-beams synchronize with the CMSP. (b) Comparison of the growth rates of one-beam interaction and two-beam interaction.

Fig. 7
Fig. 7

Simulation results of interaction: (a) phase space of the e-beams; (b) contour map of Ez; (c) field intensity and frequency spectrum; (d) energy distribution.

Fig. 8
Fig. 8

Comparison of the results among the interactions in bi-grating, SHA, and CSS with the same parameters of e-beams at 0.3 THz working frequency. (a) Comparison of longitudinal electrical field intensity during the interaction process; (b) comparison of modulation depth of the e-beams.

Fig. 9
Fig. 9

Starting current density relation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

{ E z I =A e j k x I x cos( k y I y ) H y I = k x I ω μ 0 A e j k x I x cos( k y I y ) ,
{ E z III =D sink(g+ h 2 x) sink h 2 H y III = jk ωμ D cosk(g+ h 2 x) sink h 2 .
{ E z II = n= ( B n e j k xn II x + C n e j k xn II x ) e j k zn z H y II = n= ωε k xn II ( B n e j k xn II x C n e j k xn II x ) e j k zn z ,
[ d L n= sin c 2 ( k zn d 2 ) jcot k xn II g k xn II + jcotk h 2 k ][ d L n= sin c 2 ( k zn d 2 ) jcot k xn II g k xn II + k x I k 2 ] { d L n= sin c 2 ( k zn d 2 ) j 2 k xn II sin k xn II g } 2 =0.
{ ρ= ρ 0 + ρ 1 e j( ωt k z z ) v z = v 0 + v 1 e j( ωt k z z ) J z = J 0 + J 1 e j( ωt k z z ) .
T 2 E z beam +( k 2 k z 2 )[ 1 ω p 2 ( ω k z v z ) 2 ] E z beam =0,
E z beam = n= ( D n e j k xn III x + E n e j k xn III x ) e j k zn z ,
( M+ jcotk h 2 k )( M+ k x I k 2 ) N 2 =0,
M= d L n= sin c 2 ( k zn d 2 ) 1 k xn II β n γ n + e j k xn III p β n + γ n e j k xn III p e j k xn III p β n 2 e j k xn III p β n + 2 , N= d L n= sin c 2 ( k zn d 2 ) 1 k xn II β n + γ n + + β n γ n e j k xn III p β n 2 e j k xn III p β n + 2 , β n =2cos k xn II g e 1 α n j2sin k xn II g e , β n + =2cos k xn II g e + 1 α n j2sin k xn II g e , γ n = 1 α n 2cos k xn II g e j2sin k xn II g e , γ n + = 1 α n 2cos k xn II g e j2sin k xn II g e , α n =1 ω p 2 ( ω k zn v 0 ) 2 .

Metrics