Abstract

Ultrathin metamaterial layers are modeled by a homogeneous bi-anisotropic film to represent various kinds of broken symmetries in photonic nanostructures, and specifically in optical metamaterials and metasurfaces. Two algorithms were developed to obtain the electromagnetic (EM) wave response from a metasurface (direct solver) or the metasurface parameters from the EM wave response (inverse solver) for a bi-anisotropic, subwavelength-thick nanostructured film. The algorithm is applied to two different metasurfaces to retrieve their effective homogeneous bi-anisotropic parameters. The effective layer of the same physical thickness is shown to produce the same response to plane wave excitation as the original metasurface.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
    [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  7. N. Engheta, “Antenna-guided light,” Science334(6054), 317–318 (2011).
    [CrossRef] [PubMed]
  8. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  9. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
    [CrossRef] [PubMed]
  10. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
    [CrossRef] [PubMed]
  11. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
    [CrossRef] [PubMed]
  12. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
    [CrossRef] [PubMed]
  13. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett.37(4), 698–700 (2012).
    [CrossRef] [PubMed]
  14. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
    [CrossRef] [PubMed]
  15. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
    [CrossRef]
  16. D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
    [CrossRef]
  17. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
    [CrossRef]
  18. A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
    [CrossRef]
  19. A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B83(8), 081102 (2011).
    [CrossRef]
  20. I. V. Lindell and A. J. Viitanen, “Eigenwaves in the general uniaxial bianisotropic medium with symmetric parameter dyadics,” Report No. 148 Helsinki Univ. of Technology, Espoo (Finland). Electromagnetics Lab. 1 (1993).
  21. O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
    [CrossRef]
  22. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design,” Opt. Express16(16), 11822–11829 (2008).
    [CrossRef] [PubMed]

2012 (4)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett.37(4), 698–700 (2012).
[CrossRef] [PubMed]

2011 (7)

N. Engheta, “Antenna-guided light,” Science334(6054), 317–318 (2011).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
[CrossRef]

A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B83(8), 081102 (2011).
[CrossRef]

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

2008 (3)

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design,” Opt. Express16(16), 11822–11829 (2008).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

2007 (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2002 (1)

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B83(8), 081102 (2011).
[CrossRef]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

Borneman, J. D.

A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
[CrossRef]

Cai, W.

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Chettiar, U. K.

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Drachev, V. P.

A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
[CrossRef]

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, “Antenna-guided light,” Science334(6054), 317–318 (2011).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Guo, C. C.

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
[CrossRef]

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design,” Opt. Express16(16), 11822–11829 (2008).
[CrossRef] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Kwon, D.-H.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Liu, K.

Luukkonen, O.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

Ma, T.

Markoš, P.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Maslovski, S. I.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Schultz, S.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
[CrossRef]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design,” Opt. Express16(16), 11822–11829 (2008).
[CrossRef] [PubMed]

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, D.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soukoulis, C.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Tretyakov, S. A.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

Werner, D. H.

Xiao, S.

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

Yang, B.

Ye, W. M.

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Yuan, H. K.

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

Yuan, X. D.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhu, Z. H.

IEEE Antennas Wirel. Propag. Lett. (1)

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

MRS Bull. (1)

U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008).
[CrossRef]

Nano Lett. (1)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (4)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B83(8), 081102 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011).
[CrossRef]

Science (6)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Engheta, “Antenna-guided light,” Science334(6054), 317–318 (2011).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other (1)

I. V. Lindell and A. J. Viitanen, “Eigenwaves in the general uniaxial bianisotropic medium with symmetric parameter dyadics,” Report No. 148 Helsinki Univ. of Technology, Espoo (Finland). Electromagnetics Lab. 1 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Demonstration of co-polarized and cross-polarized reflection and transmission coefficients for an x-polarized input plane wave from the front size. The incident wave is indicated in blue, and the reflected and transmitted waves are in red. The direction of (E) and (H) fields are shown by arrows.

Fig. 2
Fig. 2

The unit cell of the two nanostructures used as examples for the homogenization algorithm. A top view is presented for each to describe the x and y directions.

Fig. 3
Fig. 3

(a) Effective slab parameters of the V-antenna structure. (b) Spectral phasor of reflection and transmission coefficients using FEM and effective Bi-anisotropic layer model. For all of them, the lower end point corresponds to 1 µm and the upper end point corresponds to 3 µm.

Fig. 4
Fig. 4

Retrieval results of the two rod structure.

Tables (1)

Tables Icon

Table 1 Complex reflection and transmission coefficients

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

( D B )=( ε 0 ε c 1 ξ c 1 ζ μ 0 μ )( E H )
×( H E )=ιω( ε 0 ε c 1 ξ c 1 ζ μ 0 μ )( E H )
d dz V=ιAV
V( z )= e ιAz V| z=0
T=UP U 1 ,
E 2 = T 11 E 1 + T 12 H 1 and H 2 = T 21 E 1 + T 22 H 1 ,
, S 21 x = M 1 + I x + M 1 S 11 x , z 2 1 n S 21 x = M 2 + I x + M 2 S 11 x ,
S 11 x = [ M 2 z 2 1 n M 1 ] 1 [ z 2 1 n M 1 + M 2 + ] I x
S 21 x = [ ( M 1 ) 1 z 2 1 ( M 2 ) 1 n ] 1 [ ( M 1 ) 1 M 1 + ( M 2 ) 1 M 2 + ] I x
S 11 y = [ M 2 z 2 1 n M 1 ] 1 [ z 2 1 n M 1 + M 2 + ] I y ,
S 21 y = [ ( M 1 ) 1 z 2 1 ( M 2 ) 1 n ] 1 [ ( M 1 ) 1 M 1 + ( M 2 ) 1 M 2 + ] I y
I x + S 22 x = M 1 S 12 x , z 2 1 n( S 22 x I x )= M 2 S 12 x ,
S 22 x = [ z 2 1 ( M 2 ) 1 n ( M 1 ) 1 ] 1 [ ( M 1 ) 1 + z 2 1 ( M 2 ) 1 n ] I x
S 12 x =2 [ M 1 + z 2 n M 2 ] 1 I x
S 22 y = [ z 2 1 ( M 2 ) 1 n ( M 1 ) 1 ] 1 [ ( M 1 ) 1 + z 2 1 ( M 2 ) 1 n ] I y
S 12 y =2 [ M 1 + z 2 n M 2 ] 1 I y
V 2 =T V 1
V 2 =( S 21 x S 21 y I x + S 22 x I y + S 22 y z 2 1 n S 21 x z 2 1 n S 21 y z 2 1 ( S 22 x I x ) z 2 1 ( S 22 y I y ) ), V 1 =( I x + S 11 x I y + S 11 y S 12 x S 12 y z 1 1 n( I x S 11 x ) z 1 1 n( I y S 11 y ) z 1 1 n S 12 x z 1 1 n S 12 y ).
A= 1 ιl ln( V 2 V 1 1 ).
( ε 0 ε c 1 ξ c 1 ζ μ 0 μ )= 1 ιωl N 1 ln( V 2 V 1 1 ).
V 1 =( ( 1+r )I tI ( 1r z 0 )n t z 0 n ), V 2 =( tI ( 1+r )I t z 0 n ( 1r z 0 )n )
T= V 2 V 1 1 =( ( 1( r 2 t 2 ) 2t )I ( z 0 ( ( 1+r ) 2 t 2 ) 2t )n ( ( 1r ) 2 t 2 2 z 0 t )n ( 1( r 2 t 2 ) 2t )I )
( p 2 ( 1( r 2 t 2 ) t )p+1 ) 2 =0
e ikl + e ikl = 1( r 2 t 2 ) t
cos( kl )= 1( r 2 t 2 ) 2t
U=( 1 1 0 0 0 0 1 1 0 0 z 1 z 1 z 1 z 1 0 0 ) U 1 = 1 2 ( 1 0 0 z 1 0 0 z 0 1 z 0 0 1 z 0 )
z= z 0 ( 1+r ) 2 t 2 ( 1r ) 2 t 2 .
( ε 0 ε c 1 ξ c 1 ζ μ 0 μ )= k ω N 1 Udiag( 1,1,1,1 ) U 1 = k ω ( z 1 I 0 0 zI )
ε= k ωz , μ= ωk z

Metrics