Abstract

We use numerical simulations to investigate how the curvature of the fiber core boundary influences the attenuation of hollow antiresonant fibers. We show the importance of a “negative” curvature core boundary in reducing confinement losses and also how, for certain curvatures, optical power is coupled resonantly to cladding modes. We simulate bending losses and find results in agreement with previously-reported experiments.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
    [CrossRef]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
    [CrossRef] [PubMed]
  4. P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  7. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express16(8), 5642–5648 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5642 .
    [CrossRef] [PubMed]
  8. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5142 .
    [CrossRef] [PubMed]
  9. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett.35(8), 1157–1159 (2010).
    [CrossRef] [PubMed]
  10. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1441 .
    [CrossRef] [PubMed]
  11. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
    [CrossRef]
  12. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18470 .
    [CrossRef] [PubMed]
  13. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express4(2), 193–205 (2013).
    [CrossRef] [PubMed]
  14. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
    [CrossRef] [PubMed]
  15. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25723 .
    [CrossRef] [PubMed]
  16. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11153 .
    [CrossRef] [PubMed]
  17. F. Yu and J. C. Knight, “Limits of hollow core negative curvature fiber,” in Proceedings of CLEO 2013, paper CTu2K6.
  18. F. Poletti, J. R. Hayes, and D. J. Richardson, “Optimising the performances of hollow antiresonant fibres,” in Proceedings of ECOC 2011, paper Mo.2.LeCervin.2.
  19. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express13(16), 6015–6022 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-16-6015&origin=search .
    [CrossRef] [PubMed]
  20. K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express12(3), 394–400 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-394
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

2011 (4)

2010 (2)

2009 (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

2008 (1)

2005 (1)

2004 (1)

2003 (1)

P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

1996 (1)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Anthony, J.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Argyros, A.

Astapovich, M. S.

Atkin, D. M.

Auguste, J. L.

Beaudou, B.

Benabid, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Blondy, J. M.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Churbanov, M. F.

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Dianov, E. M.

Docherty, A.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Février, S.

Gérôme, F.

Hand, D. P.

Humbert, G.

Jamier, R.

Knight, J. C.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express4(2), 193–205 (2013).
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11153 .
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Koshiba, M.

Kosolapov, A. F.

Leonhardt, R.

Leon-Saval, S. G.

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

Maier, R. R. J.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Mortensen, N.

Olszewski, J.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Pla, J.

Plotnichenko, V. G.

Pryamikov, A. D.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. S. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Russell, P. St. J.

P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Saitoh, K.

Semjonov, S. L.

Shephard, J. D.

Shiryaev, V. S.

Snopatin, G. E.

Szpulak, M.

Urbanczyk, W.

Urich, A.

Viale, P.

Wadsworth, W. J.

Wang, Y. Y.

Wheeler, N. V.

Yu, F.

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Biomed. Opt. Express (1)

J. Eur. Opt. Soc. Rapid Publ. (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009), https://www.jeos.org/index.php/jeos_rp/article/view/09004 .
[CrossRef]

Opt. Express (8)

K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express12(3), 394–400 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-394
[CrossRef] [PubMed]

J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express13(16), 6015–6022 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-16-6015&origin=search .
[CrossRef] [PubMed]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express16(8), 5642–5648 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5642 .
[CrossRef] [PubMed]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5142 .
[CrossRef] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1441 .
[CrossRef] [PubMed]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18470 .
[CrossRef] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25723 .
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11153 .
[CrossRef] [PubMed]

Opt. Lett. (3)

Science (4)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Other (2)

F. Yu and J. C. Knight, “Limits of hollow core negative curvature fiber,” in Proceedings of CLEO 2013, paper CTu2K6.

F. Poletti, J. R. Hayes, and D. J. Richardson, “Optimising the performances of hollow antiresonant fibres,” in Proceedings of ECOC 2011, paper Mo.2.LeCervin.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Design of a negative curvature fiber: modification of the NCF geometry is obtained by moving the point C along the straight line OA. In this way the fiber structure passes from “a “ to “c,” as shown on the left hand side. The fiber core radius is kept fixed at 47μm.

Fig. 2
Fig. 2

Relationship between confinement losses (blue line with dots, left axis) and normalized curvature of a NCF. The values of the effective mode area of the NCF (red line with triangles) are indicated on the right axis. On the right hand side is a magnification of the same plot for values of the normalized curvature between 0.9 and 1.

Fig. 3
Fig. 3

Percentage of optical power in the air core (green line with ‘x’), in all the air holes of the fiber (red line with filled dots) and in the silica struts of the cladding (purple line with empty dots). On the right hand side is a magnification of the plot for curvature values between 0.9 and 1.

Fig. 4
Fig. 4

The air core mode (blue - A) and a silica cladding mode (red - B) cross at the value of the curvature corresponding to the loss peak in the confinement loss curve (shown in green). Poynting vector plots are shown on the right: C is a low-dispersion (air) cladding mode.

Fig. 5
Fig. 5

The relationship between confinement losses and bend radius is strongly affected by the coupling between air-core and cladding modes, which causes some peak losses. The wavelength associated to these peaks also depends on the particular bend radius adopted.

Metrics