Abstract

We report on the coupling of the air/metal mode and the substrate/metal mode surface plasmon polaritons in one-dimensional metallic slit arrays fabricated on a dielectric substrate. Anti-crossing is exhibited at an incident angle where the two independent modes can be resonantly excited at a specific wavelength. The size of the anti-crossing gap was measured while changing the metal thickness.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
    [CrossRef]
  4. I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B65(16), 165432 (2002).
    [CrossRef]
  5. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express13(12), 4485–4491 (2005).
    [CrossRef] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  7. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
    [CrossRef]
  8. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003).
    [CrossRef]
  9. J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
    [CrossRef]
  10. J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
    [CrossRef]
  11. K. G. Lee and Q. H. Park, “Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
    [CrossRef] [PubMed]
  12. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
    [CrossRef] [PubMed]
  13. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.88(5), 057403 (2002).
    [CrossRef] [PubMed]
  14. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70(4), 045421 (2004).
    [CrossRef]
  15. T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985).
    [CrossRef] [PubMed]
  16. R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
    [CrossRef]
  17. F. Liu, Y. Li, R. Wan, Y. Huang, X. Feng, and W. Zhang, “Hybrid Coupling Between Long-Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode,” J. Lightwave Technol.29(9), 1265–1273 (2011).
    [CrossRef]
  18. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  19. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004).
    [CrossRef] [PubMed]
  20. J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli, and W. Brütting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings,” Opt. Express19(S1Suppl 1), A7–A19 (2011).
    [CrossRef] [PubMed]
  21. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
    [CrossRef]

2011

2009

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
[CrossRef]

2008

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

2007

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

2006

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

2005

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70(4), 045421 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003).
[CrossRef]

2002

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B65(16), 165432 (2002).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

2001

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

1985

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985).
[CrossRef] [PubMed]

Abdellah, A.

Adachi, C.

Ahn, Y. H.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Arakawa, E. T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Brütting, W.

Cao, Q.

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Feng, X.

Frischeisen, J.

Garci’a-Vidal, F. J.

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Gehlhaar, R.

Ghaemi, H. E.

T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Goudonnet, J. P.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70(4), 045421 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B65(16), 165432 (2002).
[CrossRef]

Huang, Y.

F. Liu, Y. Li, R. Wan, Y. Huang, X. Feng, and W. Zhang, “Hybrid Coupling Between Long-Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode,” J. Lightwave Technol.29(9), 1265–1273 (2011).
[CrossRef]

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
[CrossRef]

Inagaki, T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985).
[CrossRef] [PubMed]

Jeong, S. C.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

Johnson, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Jung, Y. S.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003).
[CrossRef]

Kang, J. H.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Kihm, J. E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Kim, D.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Kim, D. S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

Kim, H. K.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003).
[CrossRef]

Kim, J.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Kinzel, J. B.

Kunets, V.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Lee, J. W.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

Lee, K. G.

K. G. Lee and Q. H. Park, “Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, Y.

Lienau, C.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

Liu, F.

F. Liu, Y. Li, R. Wan, Y. Huang, X. Feng, and W. Zhang, “Hybrid Coupling Between Long-Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode,” J. Lightwave Technol.29(9), 1265–1273 (2011).
[CrossRef]

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
[CrossRef]

Lugli, P.

Mansuripur, M.

Martin-Moreno, L.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Mazur, Y. I.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Moloney, J. V.

Motosuga, M.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niu, Q.

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Park, D. J.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Park, Q.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Park, Q. H.

K. G. Lee and Q. H. Park, “Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Peng, J.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
[CrossRef]

Pomraenke, R.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Ropers, C.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Runge, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Salamo, G.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70(4), 045421 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B65(16), 165432 (2002).
[CrossRef]

Scarpa, G.

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schwieger, S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Seo, M. A.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Srinivasan, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Sun, Z.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003).
[CrossRef]

Tang, X.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
[CrossRef]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Vasa, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Wan, R.

F. Liu, Y. Li, R. Wan, Y. Huang, X. Feng, and W. Zhang, “Hybrid Coupling Between Long-Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode,” J. Lightwave Technol.29(9), 1265–1273 (2011).
[CrossRef]

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Xie, Y.

Yoon, Y. C.

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Zakharian, A. R.

Zhang, W.

Appl. Phys. Lett.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003).
[CrossRef]

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006).
[CrossRef]

J. Lightwave Technol.

Langmuir

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express

Phys. Rev. B

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B65(16), 165432 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70(4), 045421 (2004).
[CrossRef]

J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007).
[CrossRef]

Phys. Rev. B Condens. Matter

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. G. Lee and Q. H. Park, “Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
[CrossRef] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic view of the metal slit array on top of a substrate. The inset is the SEM image of the slit array with Au thickness of 60 nm in Group B. (b) Transmittance of the slit array with Au thickness of 60 nm in Group B with incident angle varying up to 35°. The red (blue and green) arrows indicate the positions of the AM (SM) SPPs. (c) The enlarged figure of the transmission spectrum at the crossing angel of θ = 13°.

Fig. 2
Fig. 2

(a) Transmission spectra in group A with Au thickness of 20 nm at incident angles of 12.4°, 14.4°, 16.4°. The blue (red) arrows mark the transmission dips corresponding to the shorter (longer) wavelength LRSPPs (SRSPPs). (b) Contour plot of the transmission spectrum. The blue (red) dots indicate the spectral positions of the shorter (longer) wavelength transmission dips at each incident angle.

Fig. 3
Fig. 3

Angle-resolved transmission spectrum of the Au slit arrays with thickness (a) 20 nm, (b) 30 nm, (c) 40 nm, and (d) 50 nm. The blue (red) dots indicate the spectral positions of the shorter (longer) wavelength transmission dips at each incident angle. The dashed lines indicate the dispersion of the AM (red) and the SM (orange) SPPs, expected without the coupling. The size of the anti-crossing gap is expressed for each Au thickness.

Fig. 4
Fig. 4

(a) Angle-resolved transmission spectra calculated by the FDTD simulations for the 30 nm thick Au slit array with a period of 930 nm and a slit width of 300 nm. The blue (red) arrows indicate the positions of the LRSPP (SRSPP). (b) Contour plot of the simulated angle-revolved transmission spectrum. The blue (red) dots indicate the spectral positions of the shorter (longer) wavelength transmission dips at each incident angle.

Fig. 5
Fig. 5

Anti-crossing gap as a function of the relative field of the AM SPP at the SM interface; data collected for the Au slits from the three groups. The dashed line is the anti-crossing gap estimated from the FDTD simulations.

Tables (1)

Tables Icon

Table 1 Parameters of fabricated Au slit arrays

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ SPP [ p ]= d p  ( ε d   ε m ε d + ε m ±sin θ ),
k SP = 2π d ± k 0 ×sin  θ, 

Metrics