Abstract

We demonstrate that a two-layer shape-engineered nanostructure exhibits asymmetric polarization conversion efficiency thanks to near-field interactions. We present a rigorous theoretical foundation based on an angular-spectrum representation of optical near-fields that takes account of the geometrical features of the proposed device architecture and gives results that agree well with electromagnetic numerical simulations. The principle used here exploits the unique intrinsic optical near-field processes associated with nanostructured matter, while eliminating the need for conventional scanning optical fiber probing tips, paving the way to novel nanophotonic devices and systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
    [CrossRef]
  2. A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express17(22), 19969–19980 (2009).
    [CrossRef] [PubMed]
  3. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
    [CrossRef] [PubMed]
  4. K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett.93(4), 041121 (2008).
    [CrossRef]
  5. M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013).
    [CrossRef] [PubMed]
  6. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
    [CrossRef]
  7. C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro28(6), 7–18 (2008).
    [CrossRef]
  8. M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
    [CrossRef]
  9. M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
    [CrossRef] [PubMed]
  10. M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt.14(9), 094002 (2012).
    [CrossRef]
  11. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express17(13), 11113–11121 (2009).
    [CrossRef] [PubMed]
  12. N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
    [CrossRef] [PubMed]
  13. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008).
    [CrossRef] [PubMed]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  15. N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express16(2), 607–612 (2008).
    [CrossRef] [PubMed]
  16. G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature390(6659), 493–494 (1997).
    [CrossRef]
  17. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
    [CrossRef] [PubMed]
  18. T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
    [CrossRef]
  19. W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005).
    [CrossRef]
  20. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
    [CrossRef] [PubMed]
  21. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  22. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
    [CrossRef] [PubMed]
  23. D. W. Pohl and D. Courjon, Near Field Optics, (Kluwer Academic, 1993).
  24. E. Wolf and M. Nieto-Vesperinas, “Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,” J. Opt. Soc. Am. A2(6), 886–889 (1985).
    [CrossRef]
  25. T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer, 2005), pp. 127–199.
  26. M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys.46(9A), 6095–6103 (2007).
    [CrossRef]
  27. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
    [CrossRef]
  28. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun.284(5), 1444–1450 (2011).
    [CrossRef]
  29. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik ed. (Academic, 1985), pp. 275–367.
  30. M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
    [CrossRef]
  31. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
    [CrossRef]
  32. G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989).
  33. A. Drezet and C. Genet, “Reciprocity and optical chirality,” in Singular and Chiral Nanoplasmonics, N. Zheludev and S. V. Boriskina, eds. (Pan Stanford Publishing), in press.
  34. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  35. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  36. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
    [CrossRef] [PubMed]
  37. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
    [CrossRef]
  38. H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J.44, 1991–2001 (2003).
  39. T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.
  40. N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
    [CrossRef]
  41. Y. Tomaru, S. Hakuta, T. Tani, and M. Naya, “Optical properties of nano silver pavement,” in Extended Abstracts of the 73rd Autumn Meeting,2012 (The Japan Society of Applied Physics, 2012), p. 03–152.
  42. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
    [CrossRef] [PubMed]

2013 (2)

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013).
[CrossRef] [PubMed]

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

2012 (4)

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt.14(9), 094002 (2012).
[CrossRef]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

2011 (3)

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun.284(5), 1444–1450 (2011).
[CrossRef]

2010 (4)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (5)

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett.93(4), 041121 (2008).
[CrossRef]

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro28(6), 7–18 (2008).
[CrossRef]

A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008).
[CrossRef] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express16(2), 607–612 (2008).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
[CrossRef]

2007 (3)

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys.46(9A), 6095–6103 (2007).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

2005 (2)

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

2003 (5)

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J.44, 1991–2001 (2003).

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2002 (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

1997 (1)

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature390(6659), 493–494 (1997).
[CrossRef]

1985 (1)

Abdeddaim, R.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Akahane, K.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett.93(4), 041121 (2008).
[CrossRef]

An, S. J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

Aono, M.

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013).
[CrossRef] [PubMed]

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bagnall, D. M.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Brun, M.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Chevalier, N.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

Chigrin, D. N.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Cuche, A.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun.284(5), 1444–1450 (2011).
[CrossRef]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express17(22), 19969–19980 (2009).
[CrossRef] [PubMed]

de Rosny, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun.284(5), 1444–1450 (2011).
[CrossRef]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express17(22), 19969–19980 (2009).
[CrossRef] [PubMed]

A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008).
[CrossRef] [PubMed]

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

Dwyer, C.

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro28(6), 7–18 (2008).
[CrossRef]

Ebbesen, T. W.

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Faklaris, O.

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Fukuyama, T.

Gallas, B.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Genet, C.

Grand, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Guida, G.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Guth, N.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Hanaki, K.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Hara, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Hoga, M.

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Hori, H.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys.46(9A), 6095–6103 (2007).
[CrossRef]

Huant, S.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun.284(5), 1444–1450 (2011).
[CrossRef]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express17(22), 19969–19980 (2009).
[CrossRef] [PubMed]

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

Inoue, T.

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys.46(9A), 6095–6103 (2007).
[CrossRef]

Jeffimovs, K.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
[CrossRef]

Jouvaud, C.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Kawazoe, T.

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express17(13), 11113–11121 (2009).
[CrossRef] [PubMed]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kim, S.-J.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

Kitamura, M.

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Koschny, Th.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Kremers, C.

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

Laluet, J. Y.

Lebeck, A. R.

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro28(6), 7–18 (2008).
[CrossRef]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Mariette, H.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

Matsumoto, H.

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J.44, 1991–2001 (2003).

Matsumoto, T.

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J.44, 1991–2001 (2003).

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Naruse, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013).
[CrossRef] [PubMed]

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt.14(9), 094002 (2012).
[CrossRef]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express17(13), 11113–11121 (2009).
[CrossRef] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express16(2), 607–612 (2008).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys.46(9A), 6095–6103 (2007).
[CrossRef]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Nieto-Vesperinas, M.

Nomura, W.

Ohtsu, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013).
[CrossRef] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt.14(9), 094002 (2012).
[CrossRef]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express17(13), 11113–11121 (2009).
[CrossRef] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express16(2), 607–612 (2008).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Ohyagi, Y.

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Ourir, A.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Papakostas, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Pistol, C.

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro28(6), 7–18 (2008).
[CrossRef]

Potts, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Raupach, E.

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature390(6659), 493–494 (1997).
[CrossRef]

Rikken, G. L. J. A.

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature390(6659), 493–494 (1997).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rivory, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Roch, J.-F.

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Sangu, S.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Sekiguchi, D.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Sonnefraud, Y.

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Sugiyama, H.

Suzuki, R.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Svirko, Y.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
[CrossRef]

Tate, N.

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013).
[CrossRef] [PubMed]

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt.14(9), 094002 (2012).
[CrossRef]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express17(13), 11113–11121 (2009).
[CrossRef] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express16(2), 607–612 (2008).
[CrossRef] [PubMed]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Treussart, F.

Tsuchiya, M.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett.93(4), 041121 (2008).
[CrossRef]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Turunen, J.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
[CrossRef]

Vahimaa, P.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
[CrossRef]

Vallius, T.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wakabayashi, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Woehl, J. C.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

Wolf, E.

Yamamoto, N.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett.93(4), 041121 (2008).
[CrossRef]

Yasui, M.

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
[CrossRef]

Yatsui, T.

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010).
[CrossRef] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express17(13), 11113–11121 (2009).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
[CrossRef]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express16(2), 607–612 (2008).
[CrossRef] [PubMed]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Yi, G.-C.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

Yoo, J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Zhang, W.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Zhukovsky, S. V.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett.93(4), 041121 (2008).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007).
[CrossRef]

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005).
[CrossRef]

Europhys. Lett. (1)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

IEEE Micro (1)

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro28(6), 7–18 (2008).
[CrossRef]

IPSJ J. (1)

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J.44, 1991–2001 (2003).

J. Appl. Phys. (1)

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008).
[CrossRef]

J. Opt. (1)

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt.14(9), 094002 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys.46(9A), 6095–6103 (2007).
[CrossRef]

Langmuir (1)

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Nature (2)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature390(6659), 493–494 (1997).
[CrossRef]

Opt. Commun. (1)

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun.284(5), 1444–1450 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Phys. Rev. B (2)

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012).
[CrossRef]

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012).
[CrossRef]

Phys. Rev. Lett. (4)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013).
[CrossRef] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Other (7)

D. W. Pohl and D. Courjon, Near Field Optics, (Kluwer Academic, 1993).

T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer, 2005), pp. 127–199.

G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989).

A. Drezet and C. Genet, “Reciprocity and optical chirality,” in Singular and Chiral Nanoplasmonics, N. Zheludev and S. V. Boriskina, eds. (Pan Stanford Publishing), in press.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik ed. (Academic, 1985), pp. 275–367.

Y. Tomaru, S. Hakuta, T. Tani, and M. Naya, “Optical properties of nano silver pavement,” in Extended Abstracts of the 73rd Autumn Meeting,2012 (The Japan Society of Applied Physics, 2012), p. 03–152.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fundamental characterization of mutual relation between a device (D) and a reader (R) via optical near-fields based on angular-spectrum representation. (a) Schematic illustration of a point dipole (D) and an evaluation point (R). (b,c) The “output signal” is equated with the angular spectrum, which is the near-field component of the electromagnetic field in the subwavelength regime. The Z- and X-dependent signals are respectively shown in (b) and (c). (d,e) Correlation coefficient of the output signal as a function of minute differences in Z and X. A tiny difference strongly affects the output signal, which is a manifestation of the precision dependence of nanostructured matter via optical near-fields.

Fig. 2
Fig. 2

(a) Two-layer nanostructure: the first layer is composed of an array of square-shaped structures, and the second layer is an array of rectangular-shaped structures which is aligned at the lower right corner with respect to the first layer. (b) This structure yields differences in polarization conversion efficiencies between x-polarized input light to y-polarized output and y-polarized input light to x-polarized output light, what is defined as “asymmetry” discussed in this paper (v). Other representative shapes (i–iv and vi) do not provide such asymmetric polarization conversion efficiencies. (c) Difference of polarization conversion efficiency in (b).

Fig. 3
Fig. 3

Theoretical model for the polarization conversion asymmetry in the two-layer nanostructure, (a) with x-polarized input light, and (b) y-polarized input light.

Fig. 4
Fig. 4

(a) Angular spectra corresponding to different device architectures. The first layer is composed of square shapes. (i) The second layer is composed of rectangles placed at the lower right corners with respect to the squares in the first layer. The inter-layer distance is λ/20. (ii) The second-layer rectangles are placed in the centers with respect to the squares in the first layer. (iii) The second layer is composed of squares placed at the lower right corners of those in the first layer. (iv) The second-layer structure is the same as that in (i) but the inter-layer distance is λ/2. (b) The structure in (i) exhibits significant asymmetric properties.

Fig. 5
Fig. 5

(a,b) Electromagnetic simulations for the inter-layer distance dependence. (c) Inter-layer-distance-dependent polarization conversion efficiencies. (d) Induced charge distributions in the second layer and their decomposition, representing the vertical and horizontal non-uniformity corresponding to the x-to-y polarization conversion efficiency and the y-to-x polarization conversion efficiency. (e) Induced-charge-based figure-of-merit (FoM) for the asymmetry in polarization conversion. The disappearance of asymmetry with larger inter-layer distances agrees with (c).

Fig. 6
Fig. 6

(a) Inter-element-distance dependent asymmetry in polarization conversion. The asymmetry calculated by electromagnetic simulations and induced-charge-based FoM based on an intuitive physical picture exhibit similar behavior. (b) The spectra of polarization conversion efficiencies. The dependencies on the thicknesses of elemental structures are also shown.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E(r)=( i K 3 8 π 2 ε 0 ) μ=TE TM 0 2π dβ 0 d s || s || s z [ ε( s (±) ,μ)D ]ε( s (±) ,μ) exp(iK s (±) r) ,
s (±) =( s || cosβ, s || sinβ,± s z ) ε( s (+) ,TE)=( sinβ,cosβ,0 ) ε( s (+) ,TM)=( ± s z cosβ,± s z sinβ, s || ),
s z ={ 1 s || 2 for 0 s || <1 i s || 2 1 for 1 s || <+.
E z (R)=( i K 3 4π ε 0 ) 1 d s || s || s z f z ( s || ,D,R) ,
f z ( s || ,D,R)=d s || s || 2 1 sinθcos(ϕφ) J 1 ( K r || s || )exp( KZ s || 2 1 ) +d s || 2 cosθ J 0 ( K r || s || )exp( KZ s || 2 1 ).
J o.a. =( A+Bcosθ Bsinθ Bsinθ ABcosθ )+( 0 iγ iγ 0 )
| [f( s || ,A, X IN ) f( s || ,B, X IN )]d s || || [f( s || ,C, Y IN ) f( s || ,D, Y IN )]d s || |
FoM intrinsic =| | p XY || p YX | |.
FoM intrinsic+inter =| | p XY (1 L y /( L y + L y (G) ))|| p YX (1 L x /( L x + L x (G) ))| |

Metrics