Abstract

The inhibition of high power second-harmonic generation (SHG) in a periodically poled MgO doped LiNbO3 (PPMgLN) waveguide operating at near the room temperature has been interpreted by systematically investigating the SHG process based on the coupled mode equations in combination with the photorefraction and the temperature nonuniformities. The simulation results show that significant refractive index nonuniformities are induced by the photorefractive effect along the irradiated zone while those induced by the thermal effect are very minor. Therefore, the photorefractive effect instead of the thermal effect is the main factor that inhibits the SHG conversion efficiency. In addition, comparison of PPMgLN waveguides with different transverse dimensions shows that the waveguides with larger transverse dimension is advantageous in high power SHG since the photorefractive effect is weaker.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sakai, Y. Koyata, and Y. Hirano, “Blue light generation in a ridge waveguide MgO:LiNbO3 crystal pumped by a fiber Bragg grating stabilized laser diode,” Opt. Lett.32(16), 2342–2344 (2007).
    [CrossRef] [PubMed]
  2. A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzel, “Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm,” Opt. Lett.32(20), 3035–3037 (2007).
    [CrossRef] [PubMed]
  3. G. Li, H. Jiang, and X. Xu, “Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides,” Chin. Phys. B20(6), 064201 (2011).
    [CrossRef]
  4. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27(1), 43–45 (2002).
    [CrossRef] [PubMed]
  5. K. Sakai, Y. Koyata, and Y. Hirano, “Planar-waveguide quasi-phase-matched second-harmonic-generation device in Y-cut MgO-doped LiNbO3.,” Opt. Lett.31(21), 3134–3136 (2006).
    [CrossRef] [PubMed]
  6. J. Sun, Y. Gan, and C. Xu, “Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide,” Opt. Lett.36(4), 549–551 (2011).
    [CrossRef] [PubMed]
  7. J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett.37(11), 2028–2030 (2012).
    [CrossRef] [PubMed]
  8. D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
    [CrossRef]
  9. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005).
    [CrossRef]
  10. M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
    [CrossRef]
  11. M. Taya, M. C. Bashaw, and M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett.21(12), 857–859 (1996).
    [CrossRef] [PubMed]
  12. B. Sturman, M. Aguilar, F. Agulló-López, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled ferroelectrics,” J. Opt. Soc. Am. B14(10), 2641–2649 (1997).
    [CrossRef]
  13. Y. Chen, S. W. Liu, D. Wang, T. Chen, and M. Xiao, “Measurement of laser-induced refractive index change of inverted ferroelectric domain LiNbO3.,” Appl. Opt.46(31), 7693–7696 (2007).
    [CrossRef] [PubMed]
  14. K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
    [CrossRef]
  15. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
    [CrossRef]
  16. T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
    [CrossRef]
  17. J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
    [CrossRef]
  18. B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
    [CrossRef]
  19. L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
    [CrossRef]
  20. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
    [CrossRef]
  21. D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron.23(12), 2238–2251 (1987).
    [CrossRef]
  22. P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999).
    [CrossRef]
  23. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
    [CrossRef]
  24. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
    [CrossRef]
  25. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
    [CrossRef]
  26. F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995).
    [CrossRef]
  27. S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys.111(10), 103504 (2012).
    [CrossRef]
  28. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
    [CrossRef]
  29. S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105(8), 083102 (2009).
    [CrossRef]
  30. R. W. Boyd, Nonlinear Optics, (Academic Press, 2008), Chap. 4.
  31. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  32. A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express19(23), 23029–23035 (2011).
    [CrossRef] [PubMed]

2012 (3)

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys.111(10), 103504 (2012).
[CrossRef]

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
[CrossRef]

J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett.37(11), 2028–2030 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (1)

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

2009 (2)

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105(8), 083102 (2009).
[CrossRef]

2008 (2)

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

2007 (3)

2006 (2)

K. Sakai, Y. Koyata, and Y. Hirano, “Planar-waveguide quasi-phase-matched second-harmonic-generation device in Y-cut MgO-doped LiNbO3.,” Opt. Lett.31(21), 3134–3136 (2006).
[CrossRef] [PubMed]

B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
[CrossRef]

2005 (1)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005).
[CrossRef]

2004 (1)

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

2002 (2)

L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
[CrossRef]

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27(1), 43–45 (2002).
[CrossRef] [PubMed]

2001 (3)

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
[CrossRef]

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
[CrossRef]

2000 (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

1999 (1)

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

1987 (1)

D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron.23(12), 2238–2251 (1987).
[CrossRef]

Aguilar, M.

Agulló-López, F.

Aillerie, M.

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys.111(10), 103504 (2012).
[CrossRef]

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
[CrossRef]

Akkari, F. E.

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995).
[CrossRef]

Alexandrovski, A.

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

Almási, G.

L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
[CrossRef]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Ashihara, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105(8), 083102 (2009).
[CrossRef]

Asobe, M.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
[CrossRef]

Bashaw, M. C.

Blau, W. J.

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995).
[CrossRef]

Bourson, P.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
[CrossRef]

Buse, K.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

Campos, J. F.

B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
[CrossRef]

Cazzini, K.

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995).
[CrossRef]

Chah, K.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
[CrossRef]

Chen, B.

B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
[CrossRef]

Chen, T.

Chen, Y.

Chong, T. C.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999).
[CrossRef]

Eimerl, D.

D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron.23(12), 2238–2251 (1987).
[CrossRef]

Erbert, G.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
[CrossRef]

A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express19(23), 23029–23035 (2011).
[CrossRef] [PubMed]

Falk, M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Fejer, M. M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27(1), 43–45 (2002).
[CrossRef] [PubMed]

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

M. Taya, M. C. Bashaw, and M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett.21(12), 857–859 (1996).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Fontana, M.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
[CrossRef]

Foulon, G.

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

Fukuda, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

Furukawa, K.

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

Furukawa, Y.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Gan, Y.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Güther, R.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
[CrossRef]

Halonen, L.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

Harren, F. J. M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

Hebling, J.

L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
[CrossRef]

Henari, F. Z.

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995).
[CrossRef]

Hirano, Y.

Hirohashi, J.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105(8), 083102 (2009).
[CrossRef]

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
[CrossRef]

Hou, W. X.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999).
[CrossRef]

Hu, P. F.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999).
[CrossRef]

Itoh, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
[CrossRef]

Jechow, A.

Jedrzejczyk, D.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
[CrossRef]

Jiang, H.

G. Li, H. Jiang, and X. Xu, “Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides,” Chin. Phys. B20(6), 064201 (2011).
[CrossRef]

Jundt, D. H.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kai, T.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

Kajiyama, M. C. C.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Kazansky, P. G.

Kitamura, K.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005).
[CrossRef]

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys.111(10), 103504 (2012).
[CrossRef]

Koyata, Y.

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

Kurimura, S.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005).
[CrossRef]

Kurz, J. R.

Li, G.

G. Li, H. Jiang, and X. Xu, “Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides,” Chin. Phys. B20(6), 064201 (2011).
[CrossRef]

Liang, W.

B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
[CrossRef]

Liu, S. W.

Louchev, O. A.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Menzel, R.

Miyamoto, A.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Mizuuchi, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

Mouras, R.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

Nakamura, O.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
[CrossRef]

Nakayama, I.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

Pálfalvi, L.

L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
[CrossRef]

Parameswaran, K. R.

Paschke, K.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
[CrossRef]

A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express19(23), 23029–23035 (2011).
[CrossRef] [PubMed]

Peltola, J.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

Péter, Á.

L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
[CrossRef]

Polgár, K.

L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
[CrossRef]

Pruneri, V.

Roussev, R. V.

Route, R. K.

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

Sacher, J.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Sahm, A.

Sakai, K.

Sasamoto, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105(8), 083102 (2009).
[CrossRef]

Schedel, M.

Schwesyg, J. R.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Shi, L. P.

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999).
[CrossRef]

Stry, S.

Sturman, B.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Sugita, T.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

Sun, J.

Suzuki, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
[CrossRef]

Tadanaga, O.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
[CrossRef]

Tago, T.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
[CrossRef]

Takahashi, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Taya, M.

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Tränkle, G.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
[CrossRef]

A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express19(23), 23029–23035 (2011).
[CrossRef] [PubMed]

Uebernickel, M.

Vainio, M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

Wang, D.

Wang, Y.

B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
[CrossRef]

Xiao, M.

Xu, C.

Xu, C. Q.

B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
[CrossRef]

Xu, X.

G. Li, H. Jiang, and X. Xu, “Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides,” Chin. Phys. B20(6), 064201 (2011).
[CrossRef]

Yamamoto, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
[CrossRef]

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009).
[CrossRef]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006).
[CrossRef]

L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002).
[CrossRef]

K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005).
[CrossRef]

Chin. Phys. B (1)

G. Li, H. Jiang, and X. Xu, “Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides,” Chin. Phys. B20(6), 064201 (2011).
[CrossRef]

Electron. Lett. (1)

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron.23(12), 2238–2251 (1987).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

J. Appl. Phys. (3)

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995).
[CrossRef]

S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys.111(10), 103504 (2012).
[CrossRef]

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105(8), 083102 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (7)

Opt. Mater. (1)

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001).
[CrossRef]

Opt. Quantum Electron. (1)

P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999).
[CrossRef]

Proc. SPIE (1)

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics, (Academic Press, 2008), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of second harmonic generation in a periodically poled MgO doped congruent LiNbO3 waveguide.

Fig. 2
Fig. 2

SHG power (P2ω) versus fundamental power (Pω). The solid diamonds show the simulated ideal SHG power when the photorefraction and absorptions are neglected. The solid circles show the simulated SHG power when the absorption losses and the photorefraction are considered. The open circles show the measured SHG power versus fundamental power [8]. The solid line shows the corresponding tanh2 fit.

Fig. 3
Fig. 3

(a) Photorefractively induced refractive index change ΔnP (solid line) and thermally induced refractive index change ΔnT (dashed line) along the beam propagation direction at a pump power of 1W. (b) The corresponding distributions of the fundamental power Pω (z) (solid line) and the SHG power P2ω (z) (dashed line) along the beam propagation direction at a pump power of 1W.

Fig. 4
Fig. 4

(a) SHG conversion efficiency η versus the input fundamental power Pω in waveguide I (solid circles) and waveguide II (open circles). (b) SHG conversion efficiency η versus the input fundamental light intensity Iω in waveguide I (solid circles) and waveguide II (open circles).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ω (x,y,z,t)=( γ ω /2) e ω (x,y){ A ω (z,t)exp[j(ωt k ω z)+c.c},
E 2ω (x,y,z,t)=( γ 2ω /2) e 2ω (x,y){ A 2ω (z,t)exp[j(2ωt k 2ω z)+c.c},
d A ω dz =j η 0 A ω * A 2ω exp(jΔkz)( α ω + α G ) A ω ,
d A 2ω dz =j η 0 A ω 2 exp(jΔkz)( α 2ω +β I 2ω ) A 2ω ,
Δk=4π( n 2ω n ω )/λ2π/Λ.
2 T=q/κ ,
P 2ω = P ω tan h 2 [ ( η 0 P ω l 2 ) 1/2 ],

Metrics