Abstract

We show that the enhancement of the transverse magneto-optical Kerr effect of a smooth magnetic dielectric film covered by a noble metal grating, is strongly dependent on the precise geometry of this grating. Up till now this magnetoplasmonic enhancement was solely attributed to a nonreciprocal shift of the dispersion of the surface plasmon polariton resonances at the interface with the magnetized substrate. It is demonstrated that by hybridization of surface and cavity resonances in this 1D plasmonic grating, the transverse Kerr effect can be further enhanced, extinguished or even switched in sign and that without inverting or modifying the film’s magnetization. This strong geometrical dispersion and the accompanying anomalous sign change of the magneto-plasmonic effects in such systems has never been considered before, and might find interesting applications in sensing and nanophotonics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightw. Technol.24, 945–955 (2006).
    [CrossRef]
  2. Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
    [CrossRef]
  3. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
    [CrossRef]
  4. G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
    [CrossRef]
  5. W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett.11, 1012–1014 (1999).
    [CrossRef]
  6. M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
    [CrossRef]
  7. V. Zayets, H. Saito, S. Yuasa, and K. Ando, “Enhancement of the transverse non-reciprocal magneto-optical effect,” Appl. Phys. Lett.111, 023103 (2012).
  8. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nature Phot.6, 728–736(2012).
  9. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
    [CrossRef]
  10. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Advanced Optical Materials1, 10–35 (2013).
    [CrossRef]
  11. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
    [CrossRef]
  12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B26, 1594–1598 (2009).
    [CrossRef]
  13. V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
    [CrossRef]
  14. A. K. Zvezdin and V. A. Kotov, “Modern magnetooptics and magnetooptical materials.” (Institute of Physics pub., 1997).
  15. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt.4, S154–S160 (2002).
    [CrossRef]
  16. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
    [CrossRef]
  17. Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
    [CrossRef]
  18. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express13, 70–76 (2005).
    [CrossRef] [PubMed]
  19. H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission through subwavelength slits in metallic film,” Opt. Lett.36, 1308–1310 (2011).
    [CrossRef] [PubMed]
  20. I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices.” J. Opt. Soc. Am. B29, A103–A118 (2012).
    [CrossRef]
  21. V. I. Belotelov, D. Bykov, L. L. Doskolovich, N. Kalish, V. Kotov, and K. Zvezdin, “Giant magneto-optical orientational effect in plasmonic heterostructures.” Opt. Lett.34, 398–400 (2009).
    [CrossRef] [PubMed]
  22. E. D. Palik, ed., Handbook of Optical Constants of Solids I, II, III (Academic Press, 1991).
  23. Š. Višňovský, “Optics in magnetic multilayers and nanostructures,” (CRC, 2006).
  24. B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
    [CrossRef]
  25. V. Doorman, J.-P. Krumme, and H. Lenz, “Optical and magneto-optical tensor of bismuth-substitated yttrium-iron-garnet film,” J. of App. Phys.68, 3544–3553 (1990).
    [CrossRef]
  26. L. Li, “Reformulation of the Fourier modal method for surface–relief gratings made with anisotropic materials,” J. Mod. Opt.45, 1313–1334 (1998).
    [CrossRef]
  27. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13, 1024–1035 (1996).
    [CrossRef]
  28. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A13, 1870–1876 (1996).
    [CrossRef]
  29. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63, 033107 (2001).
    [CrossRef]
  30. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B28, 253–264 (2011).
    [CrossRef]
  31. A. T. M. A. Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood-Rayleigh anomaly and the Fabry-Pérot resonance,” Opt. Lett.37, 1742–1744 (2012).
    [CrossRef] [PubMed]
  32. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B33, 5186–5201 (1986).
    [CrossRef]
  33. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968).
    [CrossRef]
  34. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 1–9 (2006).
    [CrossRef]
  35. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
    [CrossRef]
  36. K. Postava, J. Pištora, and Š. Višňovský, “Magneto-optical effects in ultrathin structures at transversal magnetization,” Czech J. Phys. B49, 1185–1204 (1999).
    [CrossRef]

2013 (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Advanced Optical Materials1, 10–35 (2013).
[CrossRef]

2012 (4)

2011 (5)

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B28, 253–264 (2011).
[CrossRef]

H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission through subwavelength slits in metallic film,” Opt. Lett.36, 1308–1310 (2011).
[CrossRef] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
[CrossRef]

2010 (2)

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

2009 (4)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

V. I. Belotelov, D. Bykov, L. L. Doskolovich, N. Kalish, V. Kotov, and K. Zvezdin, “Giant magneto-optical orientational effect in plasmonic heterostructures.” Opt. Lett.34, 398–400 (2009).
[CrossRef] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B26, 1594–1598 (2009).
[CrossRef]

2008 (3)

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

2006 (2)

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightw. Technol.24, 945–955 (2006).
[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 1–9 (2006).
[CrossRef]

2005 (1)

2004 (1)

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

2002 (1)

Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt.4, S154–S160 (2002).
[CrossRef]

2001 (1)

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63, 033107 (2001).
[CrossRef]

1999 (2)

K. Postava, J. Pištora, and Š. Višňovský, “Magneto-optical effects in ultrathin structures at transversal magnetization,” Czech J. Phys. B49, 1185–1204 (1999).
[CrossRef]

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett.11, 1012–1014 (1999).
[CrossRef]

1998 (1)

L. Li, “Reformulation of the Fourier modal method for surface–relief gratings made with anisotropic materials,” J. Mod. Opt.45, 1313–1334 (1998).
[CrossRef]

1996 (2)

1990 (1)

V. Doorman, J.-P. Krumme, and H. Lenz, “Optical and magneto-optical tensor of bismuth-substitated yttrium-iron-garnet film,” J. of App. Phys.68, 3544–3553 (1990).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B33, 5186–5201 (1986).
[CrossRef]

1968 (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968).
[CrossRef]

Abell, J. S.

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

Akimov, I.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Akimov, I. A.

Alù, A.

Ando, K.

V. Zayets, H. Saito, S. Yuasa, and K. Ando, “Enhancement of the transverse non-reciprocal magneto-optical effect,” Appl. Phys. Lett.111, 023103 (2012).

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett.11, 1012–1014 (1999).
[CrossRef]

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968).
[CrossRef]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Advanced Optical Materials1, 10–35 (2013).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightw. Technol.24, 945–955 (2006).
[CrossRef]

Atkinson, R.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Atwater, H.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 1–9 (2006).
[CrossRef]

Baets, R.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Bayer, M.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Belotelov, V.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Belotelov, V. I.

Bergman, D. J.

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

Bloemer, M. J.

Bouchon, P.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B33, 5186–5201 (1986).
[CrossRef]

Bykov, D.

Bykov, D. A.

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Advanced Optical Materials1, 10–35 (2013).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

Cloots, R.

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

Collin,

Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt.4, S154–S160 (2002).
[CrossRef]

Collin, S.

F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express13, 70–76 (2005).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63, 033107 (2001).
[CrossRef]

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968).
[CrossRef]

Ctistis, G.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

D’Aguanno, G.

da Silva, R. C.

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

de Ceglia, D.

Ding, Y.

Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
[CrossRef]

Dionne, J.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 1–9 (2006).
[CrossRef]

Doorman, V.

V. Doorman, J.-P. Krumme, and H. Lenz, “Optical and magneto-optical tensor of bismuth-substitated yttrium-iron-garnet film,” J. of App. Phys.68, 3544–3553 (1990).
[CrossRef]

Doskolovich, L. L.

Ebbesen, T. W.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Ferreiro-Vila, E.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

Fumagalli, P.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

Garcia-Martin, J.-M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Advanced Optical Materials1, 10–35 (2013).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

García-Martín, J. M.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Gauthier-Lafaye, O.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Giersig, M.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Advanced Optical Materials1, 10–35 (2013).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

González-Díaz, J. B.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

Gopal, A.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Greffet, J.

Gutek, J.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

Guyader, L. L.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

Haidar, R.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968).
[CrossRef]

Hendren, W.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Jackson, T. J.

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

Jaeck, J.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

Javed, M.

Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
[CrossRef]

Jiang, C.

Kalish, A. N.

Kalish, N.

Kasture, S.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Keller, N.

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

Kirilyuk, A.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Koechlin, C.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

Kotov, V.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

V. I. Belotelov, D. Bykov, L. L. Doskolovich, N. Kalish, V. Kotov, and K. Zvezdin, “Giant magneto-optical orientational effect in plasmonic heterostructures.” Opt. Lett.34, 398–400 (2009).
[CrossRef] [PubMed]

Kotov, V. A.

A. K. Zvezdin and V. A. Kotov, “Modern magnetooptics and magnetooptical materials.” (Institute of Physics pub., 1997).

Krumme, J.-P.

V. Doorman, J.-P. Krumme, and H. Lenz, “Optical and magneto-optical tensor of bismuth-substitated yttrium-iron-garnet film,” J. of App. Phys.68, 3544–3553 (1990).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Lafosse, X.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

Lagae, L.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Lechuga, L.

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightw. Technol.24, 945–955 (2006).
[CrossRef]

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

Lelarge, F.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Lenz, H.

V. Doorman, J.-P. Krumme, and H. Lenz, “Optical and magneto-optical tensor of bismuth-substitated yttrium-iron-garnet film,” J. of App. Phys.68, 3544–3553 (1990).
[CrossRef]

Li, L.

Magnusson, R.

Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
[CrossRef]

Majewski, P.

Marquier, F.

Mattiucci, N.

Papaioannou, E.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

Pardo, F.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express13, 70–76 (2005).
[CrossRef] [PubMed]

Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt.4, S154–S160 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63, 033107 (2001).
[CrossRef]

Patoka, P.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

Pelouard, J.

Pelouard, J. L.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

Pelouard, J.-L.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63, 033107 (2001).
[CrossRef]

Pištora, J.

K. Postava, J. Pištora, and Š. Višňovský, “Magneto-optical effects in ultrathin structures at transversal magnetization,” Czech J. Phys. B49, 1185–1204 (1999).
[CrossRef]

Pohl, M.

I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices.” J. Opt. Soc. Am. B29, A103–A118 (2012).
[CrossRef]

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Pollard, R.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Polman, A.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 1–9 (2006).
[CrossRef]

Popova, E.

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

Postava, K.

K. Postava, J. Pištora, and Š. Višňovský, “Magneto-optical effects in ultrathin structures at transversal magnetization,” Czech J. Phys. B49, 1185–1204 (1999).
[CrossRef]

Rahman, A. T. M. A.

Rasing, T.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968).
[CrossRef]

Saito, H.

V. Zayets, H. Saito, S. Yuasa, and K. Ando, “Enhancement of the transverse non-reciprocal magneto-optical effect,” Appl. Phys. Lett.111, 023103 (2012).

Scherbakov, A. V.

Sepulveda, B.

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightw. Technol.24, 945–955 (2006).
[CrossRef]

Smolyaninov, I. I.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Song, S.

Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B33, 5186–5201 (1986).
[CrossRef]

Strelniker, Y. M.

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

Sweatlock, L.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 1–9 (2006).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B33, 5186–5201 (1986).
[CrossRef]

Teissier, R.

Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt.4, S154–S160 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63, 033107 (2001).
[CrossRef]

Temnov, V.

V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nature Phot.6, 728–736(2012).

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

Thedrez, B.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

Torrado, J. F.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

Van Parys, W.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Van Thourhout, D.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Vanwolleghem, M.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Vasilev, K.

Vengurlekar, A.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Vertruyen, B.

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

Vincenti, M. A.

Višnovský, Š.

K. Postava, J. Pištora, and Š. Višňovský, “Magneto-optical effects in ultrathin structures at transversal magnetization,” Czech J. Phys. B49, 1185–1204 (1999).
[CrossRef]

Š. Višňovský, “Optics in magnetic multilayers and nanostructures,” (CRC, 2006).

Wirix-Speetjens, R.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

Wurtz, G.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Yakovlev, D.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Yoon, J.

Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
[CrossRef]

Yuasa, S.

V. Zayets, H. Saito, S. Yuasa, and K. Ando, “Enhancement of the transverse non-reciprocal magneto-optical effect,” Appl. Phys. Lett.111, 023103 (2012).

Zaets, W.

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett.11, 1012–1014 (1999).
[CrossRef]

Zayats, A. V.

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Zayets, V.

V. Zayets, H. Saito, S. Yuasa, and K. Ando, “Enhancement of the transverse non-reciprocal magneto-optical effect,” Appl. Phys. Lett.111, 023103 (2012).

Zhu, H.

Zvezdin, A.

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Zvezdin, A. K.

Zvezdin, K.

Advanced Optical Materials (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities,” Advanced Optical Materials1, 10–35 (2013).
[CrossRef]

Appl. Phys. Lett. (3)

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, “Experimental demonstration of nonreciprocal amplified spontaneous emission in a cofe clad semiconductor optical amplifier for use as an integrated optical isolator,” Appl. Phys. Lett.85, 3980–3982 (2004).
[CrossRef]

V. Zayets, H. Saito, S. Yuasa, and K. Ando, “Enhancement of the transverse non-reciprocal magneto-optical effect,” Appl. Phys. Lett.111, 023103 (2012).

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104 (2011).
[CrossRef]

Czech J. Phys. B (1)

K. Postava, J. Pištora, and Š. Višňovský, “Magneto-optical effects in ultrathin structures at transversal magnetization,” Czech J. Phys. B49, 1185–1204 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett.11, 1012–1014 (1999).
[CrossRef]

J. Lightw. Technol. (1)

B. Sepulveda, L. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightw. Technol.24, 945–955 (2006).
[CrossRef]

J. Mod. Opt. (1)

L. Li, “Reformulation of the Fourier modal method for surface–relief gratings made with anisotropic materials,” J. Mod. Opt.45, 1313–1334 (1998).
[CrossRef]

J. of App. Phys. (1)

V. Doorman, J.-P. Krumme, and H. Lenz, “Optical and magneto-optical tensor of bismuth-substitated yttrium-iron-garnet film,” J. of App. Phys.68, 3544–3553 (1990).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt.11, 1464–4258 (2009).
[CrossRef]

Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt.4, S154–S160 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

Nano Lett. (1)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett.9, 1–6 (2009).
[CrossRef]

Nature Nanotech. (1)

V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar, A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-optical effect in magnetoplasmonic crystal,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Nature Phot. (2)

V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nature Phot.6, 728–736(2012).

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metalferromagnet structures,” Nature Phot.4, 107–111 (2010).
[CrossRef]

New Journal of Physics (1)

G. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New Journal of Physics10, 105012(2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phot. J., IEEE (1)

Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” Phot. J., IEEE3, 365–374 (2011).
[CrossRef]

Phys. Rev. B (5)

B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, “Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films,” Phys. Rev. B78, 094429 (2008).
[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 1–9 (2006).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B33, 5186–5201 (1986).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63, 033107 (2001).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B77, 205113 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Other (3)

A. K. Zvezdin and V. A. Kotov, “Modern magnetooptics and magnetooptical materials.” (Institute of Physics pub., 1997).

E. D. Palik, ed., Handbook of Optical Constants of Solids I, II, III (Academic Press, 1991).

Š. Višňovský, “Optics in magnetic multilayers and nanostructures,” (CRC, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Coordinate system and schematic representation of studied structure: gold grating with a period Λ and a thickness h1 on a magneto-optic garnet substrate in transversal configuration with incident plane wave in yz plane at the incident angle φ0 and with s- or p-polarization.

Fig. 2
Fig. 2

Specular reflectivity (bottom line) and associated TMOKE spectrum (top line) of p-polarized light incident on the grating structure in Fig. 1 with Λ = 500 nm, h1 = 150 nm and r =20 nm.

Fig. 3
Fig. 3

Distribution of square of the magnitude of the magnetic field component Hx at 0.901 eV (A), at 1.014 eV (B), at 1.318 eV (C), at 1.589 eV (D), at 2.035 eV (E). Field distribution is plotted for grating with the period Λ =500 nm, the thickness h1 = 150 nm, the air-slit width r =20 nm and the incidence of p-polarization at φ0 =10°.

Fig. 4
Fig. 4

Left: gold/air/gold waveguide and its extension into resonant cavity by introducing of the garnet and air media is shown schematically. Right: field profile of guided mode for thickness of the air gap r = 20 nm, the photon energy 1.318 eV, and the effective index of guided mode neff =1.966 + 0.0367i.

Fig. 5
Fig. 5

Left: Simulated dispersion of reflection for the grating with various thickness h1 from 30 nm to 600 nm and the fixed period Λ = 500 nm. Right: spectral position and geometrical dispersion of resonant modes calculated with analytical dispersion models Eqs. (8,7) and Eqs. (9,10).

Fig. 6
Fig. 6

Left: Simulated dispersion of reflection for the grating with various period Λ from 200 nm to 900 nm and fixed thickness h1 = 200 nm,. Right: spectral position and geometrical dispersion of resonant modes calculated with analytical dispersion models Eq. (8,7) and Eq. (9,10).

Fig. 7
Fig. 7

Distribution of square of the magnitude of the magnetic field component Hx. Left subplot: coupled resonant mode of +1st plasmon and cavity mode for the photon energy 0.89 eV and the grating thickness 200 nm. Right subplot: coupled resonant mode of −1st plasmon and cavity mode for the photon energy 0.98 eV and the grating thickness 200 nm.

Fig. 8
Fig. 8

Shift of SPP by TMOKE: comparison between the exact solution from the Eq. (12) (circle dots) and the linear approximation model Eq. (13) (dashed line) calculated at the photon energy 1eV. The green line represents pure SPP mode.

Fig. 9
Fig. 9

Magnetooptical shift and dispersion of SPP modes described by Eqs. (12,8) and dispersion curves of cavity modes Eqs. (9,10).

Fig. 10
Fig. 10

Top left: detail of TMOKE spectral dependence ΔRp for the grating thickness h1 from 30 nm to 600 nm (left) and period Λ = 500 nm. Top right: variance of the TMOKE spectral position and amplitude for chosen grating thicknesses h1 = 140, 170 and 200 nm. Bottom left: switching of the TMOKE sign at fixed photon energy 0.98 eV and 1.01 eV by variation of the thickness of the grating. Bottom right: dependence of the TMOKE amplitude on the grating thickness.

Fig. 11
Fig. 11

Left: detail of TMOKE spectral dependence ΔRp for the grating period Λ from 300 nm to 700 nm (left) and thickness h1 = 200 nm. Right: TMOKE response for chosen grating period Λ = 500, 550, 600 and 650 nm.

Tables (1)

Tables Icon

Table 1 Numerically fitted values of the Lorentz-Drude model Eq. (1).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε 2 ( E ph ) = ε + E p E ph 2 i Γ D E ph + n = 1 2 A n E 0 , n 2 E 0 , n 2 E ph 2 + i Γ n E 0 , n E ph
ε ^ 3 = [ ε x x 0 0 0 ε x x ε y z 0 ε y z ε x x ]
( A up ( 1 ) A down ( 3 ) ) = S ( ω ; k y ) ( A up ( 3 ) A down ( 1 ) ) = ( T u u ( ω ; k y ) R u d ( ω ; k y ) R d u ( ω ; k y ) T d d ( ω ; k y ) ) ( A up ( 3 ) A down ( 1 ) )
δ R p = R p ( + M T ) R p ( M T ) R p ( M T = 0 ) ,
Δ R p = R p ( + M T sat ) R p ( M T sat ) .
E ph = h c Λ m ε i ± sin φ 0 i = 1 , 3 , m ,
k SP ( E ph ) = 2 π h c E ph ε 2 ( E ph ) ε i ε 2 ( E ph ) + ε i , i = 1 , 3 ,
k W ( E ph ) = ± k SP ( E ) + m 2 π Λ , with m ,
tanh ( r 2 k 0 2 n eff 2 k 0 2 ) = k 0 2 n eff 2 k 0 2 ε 2 ε 2 k 0 2 n eff 2 k 0 2 .
2 k 0 n eff h 1 ϕ r 1 + ϕ r 3 = 2 n π , n ,
r i = | r i | exp ( i ϕ r i ) = n eff ε i n eff + ε i ,
2 ( k 0 2 3 k SP 2 ) = ( k 0 2 2 k SP 2 ) ( i q k SP + 3 k 0 2 3 k SP 2 k 0 2 q 2 3 ) .
k SP = k 0 [ ε 2 ε 3 ε 2 + ε 3 + i q ε 2 2 ( ε 3 2 ε 2 2 ) ε 3 + ε 2 ] ,

Metrics