Abstract

The generation of multi foci is an established method for high-speed parallel direct laser writing, scanning microscopy and for optical tweezer arrays. However, the quality of multi foci reduces with increasing resolution due to interference effects. Here, we report on a spatial-light-modulator-based method that allows for highly uniform, close to Gaussian spots with diffraction limited resolution using a wavelength of 780 nm. We introduce modifications of a standard algorithm that calculates a field distribution on the entrance pupil of a high numerical aperture objective splitting the focal volume into a multitude of spots. Our modified algorithm compares favourably to a commonly used algorithm in full vectorial calculations as well as in point-spread-function measurements. The lateral and axial resolution limits of spots generated by the new algorithm are found to be close to the diffraction limit.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998).
    [CrossRef]
  2. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000).
    [CrossRef]
  3. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15, 14488–14497 (2007).
    [CrossRef] [PubMed]
  4. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. P. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express16, 15942–15948 (2008).
    [CrossRef] [PubMed]
  5. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials, ”Opt. Express15, 14488–14497 (2007).
  6. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system, ”Opt. Letters34, 22–24 (2009).
    [CrossRef]
  7. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18, 11754–11762 (2010).
    [CrossRef] [PubMed]
  8. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam, ”Opt. Express18, 12136–12142 (2010).
    [CrossRef] [PubMed]
  9. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation, ”Opt. Express18, 17193–17200 (2010).
    [CrossRef] [PubMed]
  10. C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection, ”Opt. Letters35, 2230–2232 (2010).
    [CrossRef]
  11. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction, ”Opt. Express18, 21090–21099 (2010).
    [CrossRef] [PubMed]
  12. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
    [CrossRef]
  13. P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication, ”Opt. Letters36, 2302–2304 (2011).
    [CrossRef]
  14. D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
    [CrossRef]
  15. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers, ”Opt. Express10, 597–602 (2002).
    [CrossRef] [PubMed]
  16. D. G. Grier, “A revolution in optical manipulation,” Nature424, 810–816 (2003).
    [CrossRef] [PubMed]
  17. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells, ”Opt. Letters29, 2270–2272 (2004).
    [CrossRef]
  18. M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps, ”Opt. Express13, 7458–7465 (2005)
    [CrossRef]
  19. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express15, 14488–14497 (2007).
  20. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics5, 335–342 (2011).
    [CrossRef]
  21. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics, ”Opt. Express11, 158–166 (2003).
    [CrossRef] [PubMed]
  22. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
    [CrossRef]
  23. D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm, ”Opt. Express17, 9989–10000 (2009).
    [CrossRef] [PubMed]
  24. J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
    [CrossRef]
  25. J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. of Optics14, 1–9 (2012).
  26. H. Lin and M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett.102, 084103 (2013).
    [CrossRef]
  27. O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 25492555 (2004).
  28. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays, ”Opt. Express15, 1913–1922 (2006).
    [CrossRef]
  29. D. R. Burnham, T. Schneider, and D. T. Chiu, “Effects of aliasing on the fidelity of a two dimensional array of foci generated with a kinoform, ”Opt. Express19, 17121–17126 (2011).
    [CrossRef] [PubMed]
  30. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing, ”Opt. Express20, 24949–24956 (2012).
    [CrossRef] [PubMed]
  31. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
    [CrossRef]
  32. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys.7, 1–11 (2005).
    [CrossRef]
  33. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003).
    [CrossRef]
  34. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004).
    [CrossRef]
  35. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system, ”Opt. Express12, 1281–1293 (2004).
    [CrossRef] [PubMed]
  36. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7, 22–44 (2012).
    [CrossRef]

2013 (1)

H. Lin and M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett.102, 084103 (2013).
[CrossRef]

2012 (4)

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing, ”Opt. Express20, 24949–24956 (2012).
[CrossRef] [PubMed]

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. of Optics14, 1–9 (2012).

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7, 22–44 (2012).
[CrossRef]

2011 (5)

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication, ”Opt. Letters36, 2302–2304 (2011).
[CrossRef]

J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
[CrossRef]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics5, 335–342 (2011).
[CrossRef]

D. R. Burnham, T. Schneider, and D. T. Chiu, “Effects of aliasing on the fidelity of a two dimensional array of foci generated with a kinoform, ”Opt. Express19, 17121–17126 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (2)

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system, ”Opt. Letters34, 22–24 (2009).
[CrossRef]

D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm, ”Opt. Express17, 9989–10000 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

2006 (2)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays, ”Opt. Express15, 1913–1922 (2006).
[CrossRef]

2005 (2)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys.7, 1–11 (2005).
[CrossRef]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps, ”Opt. Express13, 7458–7465 (2005)
[CrossRef]

2004 (4)

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 25492555 (2004).

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells, ”Opt. Letters29, 2270–2272 (2004).
[CrossRef]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004).
[CrossRef]

A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system, ”Opt. Express12, 1281–1293 (2004).
[CrossRef] [PubMed]

2003 (3)

D. G. Grier, “A revolution in optical manipulation,” Nature424, 810–816 (2003).
[CrossRef] [PubMed]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003).
[CrossRef]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics, ”Opt. Express11, 158–166 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000).
[CrossRef]

1999 (1)

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

1998 (1)

A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998).
[CrossRef]

Agard, D. A.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004).
[CrossRef]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003).
[CrossRef]

Albero, J.

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. of Optics14, 1–9 (2012).

Andresen, P.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000).
[CrossRef]

Audouard, E.

Backsten, J.

Baum, A.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Bay, C.

C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection, ”Opt. Letters35, 2230–2232 (2010).
[CrossRef]

Bengtsson, J.

Billy, L.

Booth, M. J.

P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication, ”Opt. Letters36, 2302–2304 (2011).
[CrossRef]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction, ”Opt. Express18, 21090–21099 (2010).
[CrossRef] [PubMed]

Boyer, V.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Braat, J. J. M.

Brakenhoff, G. J.

A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998).
[CrossRef]

Buist, A. H.

A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998).
[CrossRef]

Burnham, D. R.

Campos, J.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Cassettari, D.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Chandrashekar, C. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Cheng, G.

Chichkov, B. N.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation, ”Opt. Express18, 17193–17200 (2010).
[CrossRef] [PubMed]

Chilkoti, A.

Chiu, D. T.

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics5, 335–342 (2011).
[CrossRef]

Clark, R. L.

Cole, D. G.

Cooper, J.

Cotrell, D. M.

J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
[CrossRef]

Cottrell, D. M.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Courtial, J.

Daria, V. R.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells, ”Opt. Letters29, 2270–2272 (2004).
[CrossRef]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers, ”Opt. Express10, 597–602 (2002).
[CrossRef] [PubMed]

Davia, J. A.

J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
[CrossRef]

Davis, J. A.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Dearden, G.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Deb, A. B.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Dennis, M. R.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys.7, 1–11 (2005).
[CrossRef]

Dholakia, K.

Di Leonardo, R.

Edwardson, S. P.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Engström, D.

Eriksen, R. L.

Fearon, E.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7, 22–44 (2012).
[CrossRef]

Foot, C. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Frank, A.

Freeman, J.

C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection, ”Opt. Letters35, 2230–2232 (2010).
[CrossRef]

Fricke, M.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000).
[CrossRef]

Gittard, S. D.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

Glückstad, J.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells, ”Opt. Letters29, 2270–2272 (2004).
[CrossRef]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers, ”Opt. Express10, 597–602 (2002).
[CrossRef] [PubMed]

Godun, R. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Goksör, M.

Grier, D. G.

Gu, M.

H. Lin and M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett.102, 084103 (2013).
[CrossRef]

Gustafsson, M. G. L.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004).
[CrossRef]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003).
[CrossRef]

Hanser, B. M.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004).
[CrossRef]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003).
[CrossRef]

Hasegawa, S.

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system, ”Opt. Letters34, 22–24 (2009).
[CrossRef]

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system, ”Opt. Letters34, 22–24 (2009).
[CrossRef]

Hellweg, D.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000).
[CrossRef]

Hernandez, T. J.

J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
[CrossRef]

Hertel, I. V.

Herzig, H. P.

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 25492555 (2004).

Hill, R. T.

Hinze, U.

Hirao, K.

Hübner, N.

C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection, ”Opt. Letters35, 2230–2232 (2010).
[CrossRef]

Hucknall, A.

Huot, N.

Ianni, F.

Jenness, N. J.

Jesacher, A.

Johannes, M. S.

Jordan, P.

Kelemen, L.

Kettunen, V.

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 25492555 (2004).

Koch, J.

Koroleva, A.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

Kuang, Z.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Laczik, Z. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Ladavac, K.

Leach, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys.7, 1–11 (2005).
[CrossRef]

Lee, S.

Liang, S.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Lin, H.

H. Lin and M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett.102, 084103 (2013).
[CrossRef]

Liu, D.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Martinez, J. L.

J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
[CrossRef]

Mauclair, C.

McGloin, D.

Melville, H.

Miura, K.

Moreno, I.

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. of Optics14, 1–9 (2012).

J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
[CrossRef]

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Müller, M.

A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998).
[CrossRef]

Narayan, R. J.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

Nguyen, A.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

Nielsen, T.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000).
[CrossRef]

Obata, K.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation, ”Opt. Express18, 17193–17200 (2010).
[CrossRef] [PubMed]

Ormos, P.

Padgett, M.

Padgett, M. J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys.7, 1–11 (2005).
[CrossRef]

Padgett, M. P.

Pereira, S. F.

Perrie, W.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Piestun, R.

Polin, M.

Renner, M.

Ripoll, O.

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 25492555 (2004).

Rodrigo, P. J.

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells, ”Opt. Letters29, 2270–2272 (2004).
[CrossRef]

Roichman, Y.

Rosenfeld, A.

Ruocco, G.

Sakakura, M.

Salter, P. S.

P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication, ”Opt. Letters36, 2302–2304 (2011).
[CrossRef]

Sawano, T.

Schneider, T.

Schonbrun, E.

Scully, P. J.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Sedat, J. W.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004).
[CrossRef]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003).
[CrossRef]

Shimotsuma, Y.

Sibbett, W.

Smirne, G.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Spalding, G. C.

Squier, J.

A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998).
[CrossRef]

Stoian, R.

Taranu, A.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Valkai, S.

van de Nes, A. S.

von Freymann, G.

Waller, E. H.

Watkins, K. G.

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7, 22–44 (2012).
[CrossRef]

Wilkinson, T.

C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection, ”Opt. Letters35, 2230–2232 (2010).
[CrossRef]

Wulff, K. D.

Yzuel, M. J.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Appl. Optics (2)

J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011).
[CrossRef]

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

H. Lin and M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett.102, 084103 (2013).
[CrossRef]

J. of Microscopy (3)

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004).
[CrossRef]

A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998).
[CrossRef]

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000).
[CrossRef]

J. of Optics (1)

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. of Optics14, 1–9 (2012).

JLMN (1)

D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012).
[CrossRef]

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7, 22–44 (2012).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature424, 810–816 (2003).
[CrossRef] [PubMed]

Nature Photonics (1)

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics5, 335–342 (2011).
[CrossRef]

New J. of Phys. (1)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys.7, 1–11 (2005).
[CrossRef]

Opt. Eng. (1)

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 25492555 (2004).

Opt. Express (17)

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011).
[CrossRef]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers, ”Opt. Express10, 597–602 (2002).
[CrossRef] [PubMed]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics, ”Opt. Express11, 158–166 (2003).
[CrossRef] [PubMed]

A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system, ”Opt. Express12, 1281–1293 (2004).
[CrossRef] [PubMed]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps, ”Opt. Express13, 7458–7465 (2005)
[CrossRef]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays, ”Opt. Express15, 1913–1922 (2006).
[CrossRef]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials, ”Opt. Express15, 14488–14497 (2007).

E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express15, 14488–14497 (2007).

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15, 14488–14497 (2007).
[CrossRef] [PubMed]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. P. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express16, 15942–15948 (2008).
[CrossRef] [PubMed]

D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm, ”Opt. Express17, 9989–10000 (2009).
[CrossRef] [PubMed]

N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18, 11754–11762 (2010).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam, ”Opt. Express18, 12136–12142 (2010).
[CrossRef] [PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation, ”Opt. Express18, 17193–17200 (2010).
[CrossRef] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction, ”Opt. Express18, 21090–21099 (2010).
[CrossRef] [PubMed]

D. R. Burnham, T. Schneider, and D. T. Chiu, “Effects of aliasing on the fidelity of a two dimensional array of foci generated with a kinoform, ”Opt. Express19, 17121–17126 (2011).
[CrossRef] [PubMed]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing, ”Opt. Express20, 24949–24956 (2012).
[CrossRef] [PubMed]

Opt. Letters (5)

P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication, ”Opt. Letters36, 2302–2304 (2011).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system, ”Opt. Letters34, 22–24 (2009).
[CrossRef]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells, ”Opt. Letters29, 2270–2272 (2004).
[CrossRef]

C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection, ”Opt. Letters35, 2230–2232 (2010).
[CrossRef]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003).
[CrossRef]

Phys. Rev. A (1)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of the algorithm. The dashed arrow indicates the starting point of the algorithm. The factors in the dashed boxes and the averaging procedure apply to the 3D algorithms only.

Fig. 2
Fig. 2

Calculations and measurements of the lateral and axial intensity distribution of three target spots laterally placed 1000 nm (column (a) – (c)) and five target spots laterally placed 600 nm (column (d) – (f)) apart.

Fig. 3
Fig. 3

Calculation of five spots laterally separated by 340 nm (a) and measurement of four spots laterally separated by 390 nm (b). Calculated and measured slices along the optical axis of two spots axially separated by (c) 1500 nm and (d) 1100 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P SLM = ( ( mod ( P target + P blaze + P aberr , 2 π ) π ) sinc 2 ( ( 1 A target 2 ) π ) + π .
w m 0 = 1 ; w m k = w m k 1 | A foc , m k 1 | / | A foc , m k 1 | ; A targ , m k = w m k A targ , m k 1 .

Metrics