Abstract

A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Kumar, R. Osellame, R. Ramponi, G. Cerullo, and M. Marangoni, “Background-free broadband CARS spectroscopy from a 1-MHz ytterbium laser,” Opt. Express19(16), 15143–15148 (2011).
    [CrossRef] [PubMed]
  2. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
    [CrossRef] [PubMed]
  3. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
    [CrossRef]
  4. I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010).
    [CrossRef] [PubMed]
  5. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
    [CrossRef] [PubMed]
  6. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007).
    [CrossRef] [PubMed]
  7. K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys.15(29), 12348–12359 (2013).
    [CrossRef] [PubMed]
  8. A. Weigel and N. P. Ernsting, “Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. B114(23), 7879–7893 (2010).
    [CrossRef] [PubMed]
  9. D. P. Hoffman and R. A. Mathies, “Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman,” Phys. Chem. Chem. Phys.14(18), 6298–6306 (2012).
    [CrossRef] [PubMed]
  10. K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).
  11. D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
    [CrossRef]
  12. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
    [CrossRef] [PubMed]
  13. J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
    [CrossRef] [PubMed]
  14. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
    [CrossRef] [PubMed]
  15. P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” J. Phys. Chem. B102(31), 6123–6138 (1998).
    [CrossRef]
  16. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
    [CrossRef] [PubMed]
  17. M. Born, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th expanded ed (Cambridge University Press, 1999).
  18. E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011).
    [CrossRef] [PubMed]
  19. E. Pontecorvo, C. Ferrante, C. G. Elles, and T. Scopigno, “Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330-750 nm,” Opt. Express21(6), 6866–6872 (2013).
    [CrossRef] [PubMed]
  20. S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
    [CrossRef] [PubMed]
  21. R. Zadoyan, Prism Compressor for Ultrashort Laser Pulses (Application Note 29, 2006).
  22. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1 (2003).
    [CrossRef]
  23. S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
    [CrossRef] [PubMed]
  24. D. P. Hoffman, “FSRS-LabVIEW,” https://github.com/david-hoffman/FSRS-LabVIEW .
  25. A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
    [CrossRef] [PubMed]

2013 (3)

K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys.15(29), 12348–12359 (2013).
[CrossRef] [PubMed]

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

E. Pontecorvo, C. Ferrante, C. G. Elles, and T. Scopigno, “Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330-750 nm,” Opt. Express21(6), 6866–6872 (2013).
[CrossRef] [PubMed]

2012 (3)

D. P. Hoffman and R. A. Mathies, “Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman,” Phys. Chem. Chem. Phys.14(18), 6298–6306 (2012).
[CrossRef] [PubMed]

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (2)

A. Weigel and N. P. Ernsting, “Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. B114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
[CrossRef] [PubMed]

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

2007 (2)

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007).
[CrossRef] [PubMed]

2005 (2)

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

2004 (2)

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

2003 (2)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1 (2003).
[CrossRef]

1998 (1)

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” J. Phys. Chem. B102(31), 6123–6138 (1998).
[CrossRef]

Badioli, M.

Benderskii, A. V.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010).
[CrossRef] [PubMed]

Brida, D.

Brown, K. E.

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).

Cerullo, G.

Chen, M. S.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

Co, D. T.

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).

Creelman, M.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

Dasgupta, J.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
[CrossRef] [PubMed]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1 (2003).
[CrossRef]

Dlott, D. D.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

Dobryakov, A.

A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
[CrossRef] [PubMed]

Dorfman, K. E.

K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys.15(29), 12348–12359 (2013).
[CrossRef] [PubMed]

Elles, C. G.

Ernsting, N. P.

A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
[CrossRef] [PubMed]

A. Weigel and N. P. Ernsting, “Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. B114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

Fang, C.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Ferrante, C.

Fingerhut, B. P.

K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys.15(29), 12348–12359 (2013).
[CrossRef] [PubMed]

Fréchet, J. M. J.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

Frontiera, R. R.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
[CrossRef] [PubMed]

Gord, J. R.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
[CrossRef] [PubMed]

Hambir, S. A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

Hamm, P.

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” J. Phys. Chem. B102(31), 6123–6138 (1998).
[CrossRef]

Hochstrasser, R. M.

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” J. Phys. Chem. B102(31), 6123–6138 (1998).
[CrossRef]

Hoffman, D. P.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

D. P. Hoffman and R. A. Mathies, “Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman,” Phys. Chem. Chem. Phys.14(18), 6298–6306 (2012).
[CrossRef] [PubMed]

Jayathilake, H. D.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010).
[CrossRef] [PubMed]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

Kapetanaki, S. M.

Klaumünzer, B.

A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
[CrossRef] [PubMed]

Kukura, P.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

Kumar, V.

Lagarias, J. C.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
[CrossRef] [PubMed]

Lagutchev, A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

Lee, O. P.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

Lee, S.-Y.

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
[CrossRef] [PubMed]

Lim, M.

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” J. Phys. Chem. B102(31), 6123–6138 (1998).
[CrossRef]

Marangoni, M.

Mathies, R. A.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

D. P. Hoffman and R. A. Mathies, “Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman,” Phys. Chem. Chem. Phys.14(18), 6298–6306 (2012).
[CrossRef] [PubMed]

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
[CrossRef] [PubMed]

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

McCamant, D. W.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

Meyer, T. R.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
[CrossRef] [PubMed]

Miller, J. D.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
[CrossRef] [PubMed]

Millstone, J. E.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

Mukamel, S.

K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys.15(29), 12348–12359 (2013).
[CrossRef] [PubMed]

Osellame, R.

Pontecorvo, E.

Ramponi, R.

Roy, S.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
[CrossRef] [PubMed]

Saalfrank, P.

A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
[CrossRef] [PubMed]

Sajadi, M.

A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
[CrossRef] [PubMed]

Scopigno, T.

Stauffer, H. U.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
[CrossRef] [PubMed]

Stiopkin, I. V.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010).
[CrossRef] [PubMed]

Su, T. A.

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

Taylor, K. C.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
[CrossRef] [PubMed]

Tran, R.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Veldkamp, B. S.

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).

Wandschneider, D. B.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Wasielewski, M. R.

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).

Weeraman, C.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010).
[CrossRef] [PubMed]

Weigel, A.

A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
[CrossRef] [PubMed]

A. Weigel and N. P. Ernsting, “Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. B114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

Yoon, S.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

Zhang, D.

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (2)

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007).
[CrossRef] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003).
[CrossRef] [PubMed]

J. Chem. Phys. (4)

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012).
[CrossRef] [PubMed]

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010).
[CrossRef] [PubMed]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011).
[CrossRef] [PubMed]

A. Weigel and N. P. Ernsting, “Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. B114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” J. Phys. Chem. B102(31), 6123–6138 (1998).
[CrossRef]

J. Phys. Chem. C (2)

D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013).
[CrossRef]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

Nature (1)

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Chem. Chem. Phys. (2)

D. P. Hoffman and R. A. Mathies, “Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman,” Phys. Chem. Chem. Phys.14(18), 6298–6306 (2012).
[CrossRef] [PubMed]

K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys.15(29), 12348–12359 (2013).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1 (2003).
[CrossRef]

Science (1)

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy (1)

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).

Other (3)

M. Born, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th expanded ed (Cambridge University Press, 1999).

D. P. Hoffman, “FSRS-LabVIEW,” https://github.com/david-hoffman/FSRS-LabVIEW .

R. Zadoyan, Prism Compressor for Ultrashort Laser Pulses (Application Note 29, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of the grating filter (top) and the etalon pulse shaper (bottom). Input and output pulse shapes are shown for both filters. The etalon device is optically simpler, more efficient and it provides improved beam quality compared to the grating filter.

Fig. 2
Fig. 2

(a) Comparison of the effect of the time delay between the Raman pump and probe on the stimulated Raman signal of the 992 cm−1 mode of benzene. Contour plots of the stimulated Raman spectra are shown for the grating (top, dashed) and for the etalon (bottom, solid). The intensities of the 992 cm−1 peak are shown in the middle. The asymmetry in the grating filter data is due to the presence of a slight baseline. (b) Simulations of the data in (a) using the theory outlined in the text. Important model parameters are: vibrational FID, 2.2 ps; etalon reflectivity, 98.75%; etalon separation, 18.12 μm; FWHM of the electric field of the grating pump, 7 ps.

Fig. 3
Fig. 3

A comparison of the excited state Raman spectra of FAD at 7.5 ps delay taken with the grating (dashed) and the etalon (solid). The etalon spectrum has been scaled to that of the grating using the intensities of the FAD peaks in order to emphasize reduced baseline interference with the etalon.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E etalon (ω,t)=(1R) n=1 R 2n+1 E laser ( ω,t(2n+1) τ RT )
E laser (ω,t)= e iωt 16 (t/σ) 2

Metrics