Abstract

Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180°-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett.78, 3929–3931 (2001).
    [CrossRef]
  2. E. Camargo, H. Chong, and R. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express12, 588–592 (2004).
    [CrossRef] [PubMed]
  3. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
    [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
    [CrossRef] [PubMed]
  5. B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
    [CrossRef]
  6. M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys.68, 1639–1701 (2005).
    [CrossRef]
  7. M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett.89, 121104 (2006).
    [CrossRef]
  8. M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
    [CrossRef]
  9. M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys.103, 014505 (2008).
    [CrossRef]
  10. E. C. S. Barretto and J. M. Hvam, “Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves,” P. Soc. Photo-opt. Inst.7719, 771920 (2010).
  11. J. F. Capmany, P. M. Muñoz, M. M. de Lima, and P. V. Santos, “Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977 A1 (2012).
  12. D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
    [CrossRef]
  13. D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO3waveguide superlattice,” Opt. Lett.34, 3205–3207 (2009).
    [CrossRef] [PubMed]
  14. Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
    [CrossRef]
  15. A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
    [CrossRef]
  16. E. D. Palik, Handbook of optical constants of solids (Academic Press).
  17. S. Adachi, “GaAs, AlAs, and AlxGa1−x As: material parameters for use in research and device applications,” J. Appl. Phys.58, R1–R29 (1985).
    [CrossRef]
  18. M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys.94, 7848–7855 (2003).
    [CrossRef]

2012

J. F. Capmany, P. M. Muñoz, M. M. de Lima, and P. V. Santos, “Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977 A1 (2012).

A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
[CrossRef]

2011

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

2010

E. C. S. Barretto and J. M. Hvam, “Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves,” P. Soc. Photo-opt. Inst.7719, 771920 (2010).

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

2009

2008

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys.103, 014505 (2008).
[CrossRef]

2007

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

2006

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett.89, 121104 (2006).
[CrossRef]

2005

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys.68, 1639–1701 (2005).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

2004

2003

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys.94, 7848–7855 (2003).
[CrossRef]

2001

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett.78, 3929–3931 (2001).
[CrossRef]

1985

S. Adachi, “GaAs, AlAs, and AlxGa1−x As: material parameters for use in research and device applications,” J. Appl. Phys.58, R1–R29 (1985).
[CrossRef]

Adachi, S.

S. Adachi, “GaAs, AlAs, and AlxGa1−x As: material parameters for use in research and device applications,” J. Appl. Phys.58, R1–R29 (1985).
[CrossRef]

Alsina, F.

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys.94, 7848–7855 (2003).
[CrossRef]

Andress, W. F.

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

Barretto, E. C. S.

E. C. S. Barretto and J. M. Hvam, “Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves,” P. Soc. Photo-opt. Inst.7719, 771920 (2010).

Barros, A. D.

A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
[CrossRef]

Batista, P. D.

A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
[CrossRef]

Beck, M.

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys.103, 014505 (2008).
[CrossRef]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett.89, 121104 (2006).
[CrossRef]

Benchabane, S.

Bouwmeester, D.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Camargo, E.

Capasso, F.

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

Capmany, J. F.

J. F. Capmany, P. M. Muñoz, M. M. de Lima, and P. V. Santos, “Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977 A1 (2012).

Chen, R. T.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
[CrossRef]

Chen, X.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
[CrossRef]

Chong, H.

De La Rue, R.

de Lima, M. M.

J. F. Capmany, P. M. Muñoz, M. M. de Lima, and P. V. Santos, “Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977 A1 (2012).

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys.103, 014505 (2008).
[CrossRef]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett.89, 121104 (2006).
[CrossRef]

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys.68, 1639–1701 (2005).
[CrossRef]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys.94, 7848–7855 (2003).
[CrossRef]

Diniz, J. A.

A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
[CrossRef]

Fuhrmann, D. A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Gu, L.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
[CrossRef]

Ham, D.

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Hao, Y.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

Hey, R.

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett.89, 121104 (2006).
[CrossRef]

Hvam, J. M.

E. C. S. Barretto and J. M. Hvam, “Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves,” P. Soc. Photo-opt. Inst.7719, 771920 (2010).

Janner, D.

Jiang, W.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
[CrossRef]

Jiang, X.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
[CrossRef]

Kim, H.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Krenner, H. J.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Li, Y.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Muñoz, P. M.

J. F. Capmany, P. M. Muñoz, M. M. de Lima, and P. V. Santos, “Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977 A1 (2012).

Nakamura, S.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett.78, 3929–3931 (2001).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic Press).

Petroff, P. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Pflügl, C.

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

Pruneri, V.

Qi, B.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

Santos, P. V.

A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
[CrossRef]

J. F. Capmany, P. M. Muñoz, M. M. de Lima, and P. V. Santos, “Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977 A1 (2012).

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys.103, 014505 (2008).
[CrossRef]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett.89, 121104 (2006).
[CrossRef]

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys.68, 1639–1701 (2005).
[CrossRef]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys.94, 7848–7855 (2003).
[CrossRef]

Seidel, W.

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys.94, 7848–7855 (2003).
[CrossRef]

Tahraoui, A.

A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
[CrossRef]

Tajima, K.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett.78, 3929–3931 (2001).
[CrossRef]

Thon, S. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Ueno, Y.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett.78, 3929–3931 (2001).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Wang, Q. J.

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

Wiebicke, E.

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

Wixforth, A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Yamanishi, M.

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

Yang, J.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

Yu, P.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

Yudistira, D.

Zhou, Q.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

Appl. Phys. Lett.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett.78, 3929–3931 (2001).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length Silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87, 221105 (2005).
[CrossRef]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett.89, 121104 (2006).
[CrossRef]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett.91, 061118 (2007).
[CrossRef]

IEEE Photonic. Tech. L.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic Silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photonic. Tech. L.22, 724–726 (2010).
[CrossRef]

J. Appl. Phys.

A. D. Barros, P. D. Batista, A. Tahraoui, J. A. Diniz, and P. V. Santos, “Ambipolar acoustic transport in silicon,” J. Appl. Phys.112, 013714 (2012).
[CrossRef]

S. Adachi, “GaAs, AlAs, and AlxGa1−x As: material parameters for use in research and device applications,” J. Appl. Phys.58, R1–R29 (1985).
[CrossRef]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys.94, 7848–7855 (2003).
[CrossRef]

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys.103, 014505 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III–V semiconductor substrates,” J. Vac. Sci. Technol. B26, 1848–1851 (2008).
[CrossRef]

Nat. Photonics

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5, 605–609 (2011).
[CrossRef]

Nature

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

P. Soc. Photo-opt. Inst.

E. C. S. Barretto and J. M. Hvam, “Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves,” P. Soc. Photo-opt. Inst.7719, 771920 (2010).

Rep. Prog. Phys.

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys.68, 1639–1701 (2005).
[CrossRef]

Other

E. D. Palik, Handbook of optical constants of solids (Academic Press).

J. F. Capmany, P. M. Muñoz, M. M. de Lima, and P. V. Santos, “Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977 A1 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration (not to scale) of the SAW-driven synchronized modulator fabricated on (Al,Ga)As. By means of a tapered fiber, continuous light is coupled into an input channel (IC). The device consists of a splitter and a combiner MMI linked by waveguides (MGWs) that are modulated by a SAW generated by an IDT. The SAW propagates perpendicularly to the MGW arms. The light beams leaving the device through both output waveguides (OWGs) presents a 180°-dephasing synchronization. The spatial separation between the MWGs was chosen to be 1.5λSAW.

Fig. 2
Fig. 2

Color map of the optical intensity as the light propagates through the device for different times calculated assuming δneff = 0.0011. The area between the vertical dotted lines corresponds to the active region modulated by the SAW beam in which the waveguides are separated by 1.5λSAW.

Fig. 3
Fig. 3

Top view photograph of the splitter MMI (a), as well as, top (b) and lateral (c) view of the OWGs. In (b) and (c) false color, time-integrated image of the infra-red light leaving both OWGs can also be observed. (d) Artistic illustration (not to scale) of the experimental setup used to measure the time response of the light transmission through the device. A 200× objective with focal plane located at the edge of the sample collects the light from the OWGs. A polarizer is used to filter the TE or the TM modes. A multi-mode fiber placed at the image plane selects the light from one of the OWGs for detection by a photomultiplier tube (PMT) synchronized with the RF signal that generates the SAWs. In order to obtain synchronization (sync.), the signal from the RF generator (RF gen.) is sent to a splitter (spl.) in a way that 50% of the signal has its frequency divided by 10. This is necessary to keep the trigger within the operational frequency range of the time-correlated single photon counting (TCSPC) module. The other half of the signal goes through a controllable attenuator (att.), a fixed-gain amplifier (ampl.) and then drives the interdigital transducer.

Fig. 4
Fig. 4

Time-resolved measurements of the light leaving the OWG1 (solid line) and OWG2 (dotted line) for RF powers of (a) PIDT = 15 nW, (b) PIDT = 14 μW, (c) PIDT = 70 μW and (d) PIDT = 96 μW measured for the TE polarization.

Fig. 5
Fig. 5

Experimental (symbols) values for the fast Fourier transform coefficients of the time-resolved signals for the first, second and third harmonics (h1 = 517 MHz, h2 = 1.03 GHz, and h3 = 1.55 GHz, respectively) as a function of the square root of PIDT (upper scale). Simulated results for the TE modes (lines), as a function of δneff (lower scale), are also shown. The full and open symbols correspond to TE and TM modes, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| δ Φ MWG i | = ( 2 π / λ L ) δ n eff = a P P IDT ,
n eff = n eff 0 ± δ n eff cos ( ω SAW t ) .

Metrics