Abstract

We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ −60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Michler, ed., Single Semiconductor Quantum Dots(Springer Verlag, Berlin, 2009).
    [CrossRef]
  2. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000).
    [CrossRef] [PubMed]
  3. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
    [CrossRef] [PubMed]
  4. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
    [CrossRef] [PubMed]
  5. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
    [CrossRef] [PubMed]
  6. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics3, 687–695 (2009).
    [CrossRef]
  7. C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
    [CrossRef]
  8. P. Kumar, “Quantum Frequency-Conversion,” Opt. Lett.15, 1476–1478 (1990).
    [CrossRef] [PubMed]
  9. M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today65, 32–37 (2012).
    [CrossRef]
  10. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
    [CrossRef]
  11. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
    [CrossRef] [PubMed]
  12. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
    [CrossRef] [PubMed]
  13. K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
    [CrossRef] [PubMed]
  14. C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
    [CrossRef] [PubMed]
  15. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
    [CrossRef] [PubMed]
  16. I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012).
    [CrossRef] [PubMed]
  17. K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002).
    [CrossRef]
  18. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987 (2008).
    [CrossRef] [PubMed]
  19. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
    [CrossRef]
  20. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
    [CrossRef]
  21. H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011).
    [CrossRef]
  22. A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Opt. Lett.38, 947–949 (2013).
    [CrossRef] [PubMed]
  23. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
    [CrossRef]
  24. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
    [CrossRef] [PubMed]
  25. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
    [CrossRef] [PubMed]
  26. S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Amsterdam, 2007).
  28. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
    [CrossRef] [PubMed]
  29. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604 (2007).
    [CrossRef] [PubMed]
  30. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010).
    [CrossRef]
  31. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
    [CrossRef]
  32. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37, 1331 (2012).
    [CrossRef] [PubMed]

2013 (2)

A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Opt. Lett.38, 947–949 (2013).
[CrossRef] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

2012 (6)

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37, 1331 (2012).
[CrossRef] [PubMed]

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today65, 32–37 (2012).
[CrossRef]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012).
[CrossRef] [PubMed]

2011 (4)

H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

2010 (7)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
[CrossRef]

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
[CrossRef]

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

2009 (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics3, 687–695 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

2002 (2)

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002).
[CrossRef]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

2000 (1)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000).
[CrossRef] [PubMed]

1990 (1)

Abe, E.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Afzelius, M.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Agha, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012).
[CrossRef] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Agrawal, G. P.

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987 (2008).
[CrossRef] [PubMed]

Appel, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Ates, S.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Badolato, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

Boyer de La Giroday, A.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

Clark, A. S.

Collins, M. J.

Davanço, M.

de Greve, K.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

de Riedmatten, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Dewhurst, S. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

Eggleton, B. J.

Fainman, Y.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987 (2008).
[CrossRef] [PubMed]

Fejer, M. M.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

Forchel, A.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Foster, A. C.

Foster, M. A.

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics3, 687–695 (2009).
[CrossRef]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Gisin, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
[CrossRef]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Green, W. M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010).
[CrossRef]

Gulinatti, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Hadfield, R. H.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Harvey, J.

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Höfling, S.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Hu, C. Y.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Ikeda, K.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987 (2008).
[CrossRef] [PubMed]

Jelezko, F.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Kamp, M.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Kazovsky, L.

K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002).
[CrossRef]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Kim, N. Y.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

Kin-Yip, K.

K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Kröll, S.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Kumar, P.

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000).
[CrossRef] [PubMed]

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

Kuzucu, O.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Levy, J. S.

Lin, Q.

Lipson, M.

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Liu, X.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010).
[CrossRef]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
[CrossRef]

Maier, S.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Marhic, M.E.

K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002).
[CrossRef]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000).
[CrossRef] [PubMed]

McGuinness, H. J.

H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

McKinstrie, C.

H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011).
[CrossRef]

C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
[CrossRef] [PubMed]

McKinstrie, C. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

McMahon, P. L.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

Müller, J. H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Natarajan, C. M.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Nunn, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics3, 687–695 (2009).
[CrossRef]

Okawachi, Y.

Osgood, R. M.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010).
[CrossRef]

Painter, O. J.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

Pelc, J. S.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Polzik, E. S.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Radic, S.

H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
[CrossRef] [PubMed]

Rakher, M. T.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
[CrossRef]

Rarity, J. G.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Raymer, M.

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today65, 32–37 (2012).
[CrossRef]

H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011).
[CrossRef]

C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
[CrossRef] [PubMed]

Raymer, M. G.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

Rech, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Rosenfeld, W.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Saha, K.

Saperstein, R. E.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Schneider, C.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Shahnia, S.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Shields, A. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Simon, C.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Sköld, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
[CrossRef]

Srinivasan, K.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012).
[CrossRef] [PubMed]

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today65, 32–37 (2012).
[CrossRef]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
[CrossRef]

Stevenson, R. M.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Sun, P. C.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

Tan, D. T. H.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
[CrossRef]

Thew, R.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Thurston, B.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
[CrossRef]

Uesaka, K.

K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002).
[CrossRef]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics3, 687–695 (2009).
[CrossRef]

Walmsley, I. A.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

Wang, K.-Y.

Weber, M. C.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

Weinfurter, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000).
[CrossRef] [PubMed]

Wen, Y. H.

Wrachtrup, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Xiong, C.

Yamamoto, Y.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Young, R. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

Yu, L.

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000).
[CrossRef] [PubMed]

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

European Physical Journal D (1)

C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010).
[CrossRef]

IEEE J. Sel. Top. Quan. Elec. (1)

K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002).
[CrossRef]

IEEE Photonics Tech. Lett. (1)

H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011).
[CrossRef]

Nature (3)

K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Nature Photonics (6)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics3, 687–695 (2009).
[CrossRef]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (5)

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012).
[CrossRef] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000).
[CrossRef] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002).
[CrossRef] [PubMed]

Physics Today (1)

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today65, 32–37 (2012).
[CrossRef]

Science (1)

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004).
[CrossRef] [PubMed]

Scientific Reports (1)

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Amsterdam, 2007).

P. Michler, ed., Single Semiconductor Quantum Dots(Springer Verlag, Berlin, 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Scanning electron microscope image of the 550 nm × 1200 nm silicon nitride waveguide used in the current experiment. b) Dispersion parameter D = 2 π c λ 2 d 2 β d ω 2 as a function of wavelength λ (β is the propagation constant, c is the speed of light). The zero-dispersion point is around 1200 nm, as required by phase-matching considerations. The inset shows the numerically calculated electric field amplitude for the fundamental TE waveguide mode. c) and d) Position of the pumps, signal, and idlers in frequency space for frequency downconversion (c) and upconversion (d).

Fig. 2
Fig. 2

a) Experimental setup for frequency downconversion from 980 nm to 1550 nm: A tunable 980 nm signal laser is combined with a strong 974 nm distributed feedback (DFB) pump laser and then multiplexed (through a fiber 980 nm/1550 nm wavelength-division multiplexer (WDM)) with a 1550 nm laser that is amplified via an erbium-doped fiber amplifier (EDFA). Fiber polarization controllers (FPCs) ensure that the signal and pumps are co-polarized and launched into the desired waveguide mode. An optical spectrum analyzer (OSA) monitors the 980 nm wavelengths, while the output of the waveguide is first filtered through a notch filter (NF) to remove the residual 1550 nm pump, and then either sent to an InGaAs spectrometer or through a bandpass filter (BPF) to an InGaAs single photon avalanche diode (SPAD). b) Sample spectrum of the generated idlers together with an OSA trace of the 980 nm-band pump+signal. The position of the 1550 nm pump, which has been notch filtered, is denoted by a dashed line. c) Contour plot of the generated 1550 nm idler spectra (in units of detuning from the 1550 nm pump) for differing levels of 980 nm band pump-input signal detuning (taken with 0.2 nm tuning steps). d) Normalized idler power as a function of its wavelength for fixed pumps and tunable 980 nm input signal. The gray central region denotes the bandwidth of the 1550 nm pump rejection notch filter. e) Conversion efficiency (bottom) and converted idler and background count rate (top) as a function of the 1550 nm pump power inside the waveguide at its input. The error bars (often smaller than the data point size) are due to the variation in the detected SPAD count rates, and are one standard deviation values. The signal-to-background level for the converted idler increases from 5.6 ± 2.5 at the lowest pump power to 9.6 ± 2.4 at the highest pump power.

Fig. 3
Fig. 3

a) Experimental setup for frequency upconversion from 1550 nm to 980 nm: A tunable 1550 nm signal laser is combined on a 90:10 coupler with a 1550 nm pump and then multiplexed (through a fiber 980 nm/1550 nm WDM) with a 974 nm pump laser. The output of the WDM is sent to the waveguide chip, and the output of the waveguide is notch-filtered to remove the residual 974 nm pump. The 1550 nm wavelengths are monitored on the OSA, while the converted 980 nm band idlers are measured on a spectrometer equipped with a Si CCD, or are bandpass filtered and measured on a Si SPAD. b) Sample spectrum of the generated idlers together with an OSA trace of the 1550 nm-band pump+signal. The position of the 974 nm pump, which has been notch filtered, is denoted by a dashed line. c) Contour plot of the generated 980 nm idler spectra (in units of detuning from the 974 nm pump) for different levels of 1550 nm band pump-input signal detuning (taken with 1 nm tunings steps). d) Normalized idler power as a function of its wavelength for fixed pumps and tunable 1550 nm input signal. The gray central region denotes the bandwidth of the 974 nm pump rejection notch filter. e) Conversion efficiency (bottom) and converted idler and background count rate (top) as a function of the 1550 nm pump power inside the waveguide and at its input. The error bars (often smaller than the data point size) are due to the variation in the detected SPAD count rates, and are one standard deviation values. The signal-to-background level for the converted idler increases up to 20.2 ± 0.4 at the highest pump power.

Fig. 4
Fig. 4

a) FWM-BS process for nearly noise-free, narrowband frequency conversion: two telecommunications-band pumps cause a wavelength-exchange between a signal and its idler according to the energy conservation rule: ωi = ωs ± (ω2ω1). b) OSA spectrum of the telecommunications-band pumps and spectrometer record of the generated 980 nm band idlers (residual unconverted signal attenuated via fiber Bragg gratings). c) Converted idler and the corresponding background vs. waveguide input pump power. For the majority of the input power range, no excess noise above the SPAD dark count rate is observed. At the highest pump power, the signal-to-background ratio is ≈ 50, and is limited by excesss noise from the pump EDFA. The error bars are due to the variation in the detected SPAD count rates, and are one standard deviation values.

Fig. 5
Fig. 5

a) Design parameters for Si3N4-on-SiO2 waveguides targeting up(down)conversion between the telecommunications band and various single photon sources (SPSs) (Nitrogen vacancy center in diamond, Rubidium, Cesium, and InAs QD in descending order). The table specifies, for each SPS wavelength (λ), the waveguide width (W) and the necessary input peak power (Pin) for maximum conversion. The waveguide thickness has been fixed at 550 nm in all cases. b) The corresponding dispersion parameter D for each waveguide geometry. (c) Split-step Fourier simulation for the case of downconversion between 780 nm and 1550 nm. Conversion efficiency is plotted as a function of pump power, where the power in both pumps are assumed to be equal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η ( z ) = 4 γ 1 γ 2 P 1 P 2 g 2 sin 2 ( g z )

Metrics