Abstract

NaYbF4:Tm3+@SiO2 core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm3+@SiO2 core-shell micro-particles with a 980 nm infrared laser as excitation source. The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled 1D2 /1G4 and 3F2 /3H4 levels of the Tm3+ ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a low-temperature sensor has been obtained with a minimum sensitivity of 5.4 × 10−4 K−1 at 430 K. It exhibits temperature induced population re-distribution from 1D2 /1G4 thermally coupled levels at higher temperature range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
    [CrossRef] [PubMed]
  2. F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).
  3. F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
    [CrossRef]
  4. H. S. Jang, K. Woo, and K. Lim, “Bright dual-mode green emission from selective set of dopant ions in β-Na(Y,Gd)F4: Yb,Er/β-NaGdF4:Ce,Tb core/shell nanocrystals,” Opt. Express20(15), 17107–17118 (2012).
    [CrossRef]
  5. X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
    [CrossRef]
  6. R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron.20(4), 271–358 (1996).
    [CrossRef]
  7. Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
    [CrossRef] [PubMed]
  8. F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).
  9. F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
    [CrossRef] [PubMed]
  10. G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
    [CrossRef] [PubMed]
  11. W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
    [CrossRef]
  12. S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011).
    [CrossRef]
  13. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem.164(1), 96–100 (2012).
    [CrossRef]
  14. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
    [CrossRef]
  15. W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013).
    [CrossRef]
  16. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
    [CrossRef] [PubMed]
  17. Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski, “Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing,” Opt. Lett.37(24), 5214–5216 (2012).
    [CrossRef] [PubMed]
  18. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials,” Phys. Rev. Lett.97(3), 033001 (2006).
    [CrossRef] [PubMed]
  19. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
    [CrossRef]
  20. M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
    [CrossRef]
  21. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
    [CrossRef] [PubMed]
  22. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale4(15), 4301–4326 (2012).
    [CrossRef] [PubMed]
  23. L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “Response to“Critical Growth Temperature of Aqueous CdTe Quantum Dots is Non-negligible for their Application as Nanothermometers,” Samll DOI: (2013)
    [CrossRef]
  24. L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
    [CrossRef] [PubMed]
  25. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005).
    [CrossRef]
  26. F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
    [CrossRef] [PubMed]
  27. L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
    [CrossRef] [PubMed]
  28. M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
    [CrossRef]
  29. J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
    [CrossRef]
  30. M. J. Weber, “Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3,” Phys. Rev.171(2), 283–291 (1968).
    [CrossRef]
  31. M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys.53(6), 4344–4350 (1982).
    [CrossRef]
  32. G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
    [CrossRef]
  33. G. F. Wang, W. P. Qin, L. L. Wang, G. D. Wei, P. F. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express16(16), 11907–11914 (2008).
    [CrossRef] [PubMed]

2013 (3)

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
[CrossRef]

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013).
[CrossRef]

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

2012 (8)

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

H. S. Jang, K. Woo, and K. Lim, “Bright dual-mode green emission from selective set of dopant ions in β-Na(Y,Gd)F4: Yb,Er/β-NaGdF4:Ce,Tb core/shell nanocrystals,” Opt. Express20(15), 17107–17118 (2012).
[CrossRef]

Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski, “Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing,” Opt. Lett.37(24), 5214–5216 (2012).
[CrossRef] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
[CrossRef]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem.164(1), 96–100 (2012).
[CrossRef]

2011 (6)

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011).
[CrossRef]

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
[CrossRef]

2010 (1)

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

2009 (2)

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

2008 (1)

2007 (1)

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

2006 (2)

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials,” Phys. Rev. Lett.97(3), 033001 (2006).
[CrossRef] [PubMed]

2005 (1)

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005).
[CrossRef]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

2001 (1)

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

2000 (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

1998 (1)

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

1996 (1)

R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron.20(4), 271–358 (1996).
[CrossRef]

1982 (1)

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys.53(6), 4344–4350 (1982).
[CrossRef]

1968 (1)

M. J. Weber, “Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3,” Phys. Rev.171(2), 283–291 (1968).
[CrossRef]

Agren, H.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Aigouy, L.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005).
[CrossRef]

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Angell, C. A.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys.53(6), 4344–4350 (1982).
[CrossRef]

Balda, R.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials,” Phys. Rev. Lett.97(3), 033001 (2006).
[CrossRef] [PubMed]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

Biner, D.

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Boruc, Z.

Braun, G.B.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Brites, C. D. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Bu, Y. Y.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
[CrossRef]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
[CrossRef]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
[CrossRef]

Cao, C. Y.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

Cao, W. W.

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013).
[CrossRef]

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
[CrossRef]

Capobianco, J. A.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).

Carlos, L. D.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Charlot, B.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005).
[CrossRef]

Chen, G. Y.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Chen, X. Y.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

Cui, D. X.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Cui, D.X.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Cui, Y.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

Cussó, F.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
[CrossRef]

De, G.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

de Araujo, M. T.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Deng, R. R.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

dos Santos, P. V.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Epstein, R. I.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Fernandez, J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials,” Phys. Rev. Lett.97(3), 033001 (2006).
[CrossRef] [PubMed]

Fetlinski, B.

Gao, G.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Gao, X. Y.

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
[CrossRef]

Garcia-Adeva, A. J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials,” Phys. Rev. Lett.97(3), 033001 (2006).
[CrossRef] [PubMed]

Gouveia-Neto, A. S.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Grimm, J.

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Gudel, H. U.

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Han, G.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Han, Y.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

He, M.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

He, R.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Hernández, S. E.

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Jacinto, C.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

Jang, H. S.

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

Ju, Q.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Kaczkan, M.

Kim, R.

Kramer, K. W.

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Kutikov, A.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Lahoz, F.

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

Lalla, E.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011).
[CrossRef]

Lavín, V.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011).
[CrossRef]

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

León-Luis, S. F.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011).
[CrossRef]

Li, F.

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Li, R. F.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

Li, S.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

Li, Z.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Lim, K.

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Liu, J. L.

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Liu, L. Q.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Liu, X. G.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

Liu, Y. S.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

Luo, W. Q.

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

Ma, J. B.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Maciel, G. S.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem.164(1), 96–100 (2012).
[CrossRef]

Maestro, L. M.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

Mahalingam, V.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).

Malinowski, M.

Mao, C. B.

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Martín, I. R.

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

Medeiros Neto, J. A.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Mendoza, U. R. R.

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

Mi, C. C.

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Millán, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Morgan, C. G.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).

Mortier, M.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005).
[CrossRef]

Moskovits, M.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Naccache, R.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).

Niedbala, R. S.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

Ohulchanskyy, T. Y.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Palacio, F.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Pallaoro, A.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Pan, L. Y.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Pandey, R. K.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Patel, N. J.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Prasad, P. N.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Qin, W. P.

G. F. Wang, W. P. Qin, L. L. Wang, G. D. Wei, P. F. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express16(16), 11907–11914 (2008).
[CrossRef] [PubMed]

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

Quintanilla, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
[CrossRef]

Raap, A. K.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

Rakov, N.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem.164(1), 96–100 (2012).
[CrossRef]

Rodríguez, C. P.

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

Rodríguez-Mendoza, U. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011).
[CrossRef]

Scheps, R.

R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron.20(4), 271–358 (1996).
[CrossRef]

Sheik-Bahae, M.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Shen, J.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Shi, Y.G.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

Silva, U. R.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

Solé, J. G.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

Sombra, A. S. B.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Song, J.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Stucky, G.D.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Su, H. C.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Suyver, J. F.

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Tang, W.

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Tanke, H. J.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

Tessier, G.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005).
[CrossRef]

Tu, D. T.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

Turczynski, S.

Vail, T.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

van De Rijke, F.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

Veen, M. K.

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

Wang, F.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

Wang, G. F.

Wang, J.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

Wang, L. L.

Wang, M.

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Wang, Q. X.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

Wang, X. F.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
[CrossRef]

Wang, Y.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

Weber, M. J.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys.53(6), 4344–4350 (1982).
[CrossRef]

M. J. Weber, “Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3,” Phys. Rev.171(2), 283–291 (1968).
[CrossRef]

Wei, G. D.

Woo, K.

Xu, S. K.

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Xu, W.

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013).
[CrossRef]

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
[CrossRef]

Xuan, Y.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
[CrossRef]

Yan, X. H.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
[CrossRef]

Zhang, F.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Zhang, J. S.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

Zhang, Y. X.

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Zhang, Y.C.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Zhang, Z. G.

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013).
[CrossRef]

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
[CrossRef]

Zhao, D.Y.

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Zhao, H.

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013).
[CrossRef]

Zhen, J.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
[CrossRef]

Zheng, L. J.

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
[CrossRef]

Zhu, H. M.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

Zhu, P. F.

Ziegler, D. C.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys.53(6), 4344–4350 (1982).
[CrossRef]

Zijlmans, H.

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

ACS Nano (1)

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano6(9), 8280–8287 (2012).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater.19(18), 2924–2929 (2009).

Adv. Mater. (1)

Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed. Engl.50(28), 6306–6310 (2011).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express4(2), 022601 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett.87(18), 184105 (2005).
[CrossRef]

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013).
[CrossRef]

J. Appl. Phys. (2)

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys.53(6), 4344–4350 (1982).
[CrossRef]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

J. Lumin. (2)

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets,” J. Lumin.122–123, 128–130 (2007).
[CrossRef]

J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer, and H. U. Gudel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

J. Phys. Chem. C (1)

M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu, F. Li, C. B. Mao, and S. K. Xu, “NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells,” J. Phys. Chem. C113(44), 19021–19027 (2009).
[CrossRef]

Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy (1)

F. Zhang, G.B. Braun, A. Pallaoro, Y.C. Zhang, Y.G. Shi, D.X. Cui, M. Moskovits, D.Y. Zhao, and G.D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett.12(1), 61–67 (2012).

Nanoscale (2)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale4(16), 4799–4829 (2012).
[CrossRef] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale4(15), 4301–4326 (2012).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol.19(3), 273–276 (2001).
[CrossRef] [PubMed]

Nat. Mater. (1)

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

M. J. Weber, “Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3,” Phys. Rev.171(2), 283–291 (1968).
[CrossRef]

Phys. Rev. Lett. (2)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials,” Phys. Rev. Lett.97(3), 033001 (2006).
[CrossRef] [PubMed]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett.85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron.20(4), 271–358 (1996).
[CrossRef]

Sens. Actuators B Chem. (4)

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.178, 520–524 (2013).
[CrossRef]

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem.173, 250–253 (2012).
[CrossRef]

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem.158(1), 208–213 (2011).
[CrossRef]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem.164(1), 96–100 (2012).
[CrossRef]

Small (1)

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging,” Small7(13), 1774–1778 (2011).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

F. Lahoz, C. P. Rodríguez, S. E. Hernández, I. R. Martín, V. Lavín, and U. R. R. Mendoza, “Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1671–1677 (2011).
[CrossRef]

Theranostics (1)

L. Y. Pan, M. He, J. B. Ma, W. Tang, G. Gao, R. He, H. C. Su, and D. X. Cui, “Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer,” Theranostics3(3), 210–222 (2013).
[CrossRef] [PubMed]

Other (1)

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “Response to“Critical Growth Temperature of Aqueous CdTe Quantum Dots is Non-negligible for their Application as Nanothermometers,” Samll DOI: (2013)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmission electron microscope micrographs and selected area electron diffraction patterns of (a,b) NaYbF4: 1.6%Tm3+ nano-spheres, (c,d) NaYbF4: 1.6% Tm3+ active-core/SiO2 shell micro-particles.

Fig. 2
Fig. 2

Power XRD patterns of (a) NaYbF4:1.6%Tm3+ nano-spheres, (b) NaYbF4: 1.6%Tm3+ active-core/SiO2 shell micro-particles, (c) the standard data for α-NaYbF4 (JCPDS 77-2043), (d) the standard data for β-NaYbF4 (JCPDS 27–1427).

Fig. 3
Fig. 3

(a) Photoluminescence spectra of NaYbF4:xTm3+ (x = 0.4%, 0.8%,1.6%, 2.4%, and 3.2%) nano-spheres under 980 nm excitation, (b) Photoluminescence spectra of NaYbF4:1.6%Tm3+ nano-spheres and NaYbF4:1.6%Tm3+/SiO2 core-shell micro-particles under 980 nm excitation at room temperature.

Fig. 4
Fig. 4

Temperature dependent Tm3+ anti-stokes fluorescence emissions from the NaYbF4: Tm3+/sio2 core-shell micro-particles.

Fig. 5
Fig. 5

Temperature dependent effective bandwidth Δλeff of anti-Stokes fluorescence emissions of NaYbF4: Tm3+ active-core/SiO2 shell micro-particles.

Fig. 6
Fig. 6

(a) R between the 697 nm and 798 nm, (b) R between the 450 nm and 478 nm, upconversion emissions as a function of temperature in the range of 100~700 K under 980 nm excitation.

Fig. 7
Fig. 7

The mechanism on optical thermal sensing through Yb3+-Tm3+ energy transfer under 980 nm excitation

Fig. 8
Fig. 8

Temperature dependent PCA of (a) 1D2 and 1G4 and (b) 3F2 and 3H4 thermally coupled levels.

Fig. 9
Fig. 9

(a) Sensor sensitivity SA and (b) relative sensor sensitivity SR as a function of the temperature for excitation at 980 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δλ eff = I(λ)dλ I max ,
R= I U I L =A e ΔE K B T +B
PCA= I U I U + I L ,
PCA A A+ e ΔE/ k B T ,
S R = dR dT =R ΔE K B T 2 ,
S A = 1 R dR dT = ΔE K B T 2

Metrics