Abstract

We report on the experimental demonstration of a novel silicon based fully integrated nonlinear Mach Zehnder device. A standard silicon waveguide is used as a nonlinear arm, conversely a large mode SU-8 waveguide acts as a purely linear arm. Given this asymmetry, an intensity dependent phase shift can be introduced between the two interferometric arms. Thanks to a fine tuning of the silicon arm optical properties, a low power, ultrafast, picosecond operation is demonstrated, allowing the use of this device for ultrafast all-optical signal processing in high density communication networks.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
    [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  3. H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express14(3), 1182–1188 (2006).
    [CrossRef] [PubMed]
  4. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
    [CrossRef] [PubMed]
  5. L. R. Nunes, T. K. Liang, H. K. Tsang, M. Tsuchiya, D. Van Thourhout, P. Dumon, and R. Baets, “Ultrafast non-inverting wavelength conversion by cross-absorption modulation in silicon wire waveguides,” in Proceeding of IEEE Conference on Group IV Photonics (Institute of Electrical and Electronic Engineers New York, 2005), pp. 154–156.
    [CrossRef]
  6. W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
    [CrossRef]
  7. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
    [CrossRef] [PubMed]
  8. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993).
    [CrossRef]
  9. K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” IEEE Electron. Lett.26(14), 962–964 (1990).
    [CrossRef]
  10. I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011).
    [CrossRef] [PubMed]
  11. I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
    [CrossRef]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
    [CrossRef]
  13. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  14. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16(1), 200–215 (2010).
    [CrossRef]
  15. C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using nonlinear optics,” J. Lightwave Technol.22(1), 266–274 (2004).
    [CrossRef]
  16. L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime,” Opt. Express21(11), 13075–13083 (2013).
    [CrossRef] [PubMed]
  17. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011).
    [CrossRef] [PubMed]

2013

2012

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

2011

2010

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16(1), 200–215 (2010).
[CrossRef]

2007

2006

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using nonlinear optics,” J. Lightwave Technol.22(1), 266–274 (2004).
[CrossRef]

2003

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

2002

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
[CrossRef]

1999

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

1993

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993).
[CrossRef]

1990

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” IEEE Electron. Lett.26(14), 962–964 (1990).
[CrossRef]

Agrawal, G. P.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16(1), 200–215 (2010).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Astar, W.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Badding, J. V.

Baets, R.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” IEEE Electron. Lett.26(14), 962–964 (1990).
[CrossRef]

Bock, P. J.

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011).
[CrossRef] [PubMed]

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
[CrossRef] [PubMed]

Carter, G. M.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Cheben, P.

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011).
[CrossRef] [PubMed]

Clemmen, S.

Cohen, O.

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Dadap, J. I.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Day, T. D.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Doran, N. J.

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” IEEE Electron. Lett.26(14), 962–964 (1990).
[CrossRef]

Dorrer, C.

Driscoll, J. B.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
[CrossRef] [PubMed]

Galili, M.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Glesk, I.

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011).
[CrossRef] [PubMed]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993).
[CrossRef]

Green, W. M. J.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Healy, N.

Hu, H.

Janz, S.

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011).
[CrossRef] [PubMed]

Jeppesen, P.

Ji, H.

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Kuo, Y. H.

Kuyken, B.

Lapointe, J.

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011).
[CrossRef] [PubMed]

Lin, Q.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Liu, A.

Liu, X. P.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Massar, S.

Maywar, D. N.

Mehta, P.

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
[CrossRef] [PubMed]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
[CrossRef] [PubMed]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Morthier, G.

Nelson, B. P.

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” IEEE Electron. Lett.26(14), 962–964 (1990).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Osgood, R. M.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Oxenløwe, L. K.

Painter, O. J.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

Peacock, A. C.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Premaratne, M.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16(1), 200–215 (2010).
[CrossRef]

Prucnal, P. R.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993).
[CrossRef]

Pu, M.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Roelkens, G.

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Rong, H.

Rukhlenko, I. D.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16(1), 200–215 (2010).
[CrossRef]

Samarelli, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
[CrossRef] [PubMed]

Schmid, J. H.

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength mach-zehnder on silicon,” Opt. Express19(15), 14031–14039 (2011).
[CrossRef] [PubMed]

Selvaraja, S. K.

Shen, L.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993).
[CrossRef]

Sorel, M.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
[CrossRef] [PubMed]

Sparks, J. R.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Vlasov, Y. A.

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Appl. Phys. Lett.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

IEEE Electron. Lett.

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” IEEE Electron. Lett.26(14), 962–964 (1990).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” IEEE Electron. Lett.38(25), 1669–1670 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16(1), 200–215 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of 2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5(7), 787–790 (1993).
[CrossRef]

J. Lightwave Technol.

Nat Commun

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011).
[CrossRef] [PubMed]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Quantum Electron.

I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “Picosecond all-optical switching using nonlinear Mach-Zehnder with silicon subwavelength grating and photonic wire arms,” Opt. Quantum Electron.44(12-13), 613–621 (2012).
[CrossRef]

Science

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Other

L. R. Nunes, T. K. Liang, H. K. Tsang, M. Tsuchiya, D. Van Thourhout, P. Dumon, and R. Baets, “Ultrafast non-inverting wavelength conversion by cross-absorption modulation in silicon wire waveguides,” in Proceeding of IEEE Conference on Group IV Photonics (Institute of Electrical and Electronic Engineers New York, 2005), pp. 154–156.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the device. SU8-Silicon (and vice versa) transition are made by means of inverse taper sections (depicted on the top part of the schematic). The lengths of the two arms are designed so that the optical paths, when a low power signal is injected, are equals, and the MZI is balanced. Two SEM images are shown on the bottom: a) two arms of the MZI, on the top the SU8 loaded arm and on the bottom the nonlinear Si arm; b) 50:50 splitter made in silicon.

Fig. 2
Fig. 2

Inverse taper section scheme used in the final device. On the right hand part a SEM image of the taper is shown.

Fig. 3
Fig. 3

Split step simulation results for a L = 7.8 mm silicon waveguide. Note that the red lines in the top and right hand panel are an exponential curves because the horizontal axis is in dBm units.

Fig. 4
Fig. 4

Nonlinear Mach Zehnder operation set-up scheme. The output band-pass filter (BPF) stage is realized by cascading two slightly different optical filters.

Fig. 5
Fig. 5

(a) Switching traces at 10 GHz operation for a Pc = 27 dBm (b) Switching traces at 40 GHz operation taken from the bar-port for three different clock peak pump levels

Fig. 6
Fig. 6

10 Gb/s traces taken from the bar-port at control signal peak power which were above the TPA/FCA limit identified by the numerical simulations. Two traces are shown: the blue trace corresponds to a control signal peak power of 33 dBm and the red trace to a Pc = 34 dBm.

Fig. 7
Fig. 7

Autocorrelation trace taken from the bar- port at Pc = 27 dBm. No degradation effects were observed at this pump level and at lower pump levels

Tables (1)

Tables Icon

Table 1 Waveguide linear and nonlinear parameters used as input in our numerical simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A c z + α lin 2 A c +i 1 2 β 2c 2 A c t 2 =i(γ| A c | 2 +2γ| A p | 2 ) A c 1 2 A eff ( β TPA | A c | 2 +2 β TPA | A p | 2 ) A c + N g σ c 2 A c i N g 2π k c λ c A c .
A p z + α lin 2 A p +i 1 2 β 2p 2 A p t 2 =i(γ| A p | 2 +2γ| A c | 2 ) A p 1 2 A eff ( β TPA | A p | 2 +2 β TPA | A c | 2 ) A p + N g σ p 2 A p i N g 2π k p λ p A p .
N g t = β TPA 2h ν c | A c | 4 N g τ g .
Δϕ=2γ L eff P peak

Metrics