Abstract

We demonstrate selection of reliable approaches for post-production characterization of oblique incidence multilayer optical coatings. The approaches include choice of input information, selection of adequate coating model, corresponding numerical characterization algorithm, and verification of the results. Applications of the approaches are illustrated with post-production characterization of oblique incidence edge filter, oblique incidence beam splitter and oblique incidence 43-layer quarter-wave mirror.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, and D. J. Smith, “Real-time characterization and optimization of E-beam evaporated optical coatings,” in Optical Interference Coatings, OSA Technical Digest Series (2001), ME8.
  2. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt.51(22), 5543–5551 (2012).
    [CrossRef] [PubMed]
  3. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt.47(13), C49–C54 (2008).
    [CrossRef] [PubMed]
  4. A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt.51(2), 245–254 (2012).
    [CrossRef] [PubMed]
  5. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt.50(20), 3389–3395 (2011).
    [CrossRef] [PubMed]
  6. T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, and V. Pervak, “Reverse engineering of an output coupler using broadband monitoring data and group delay measurements,” in Optical Interference Coatings, OSA Technical Digest Series (2013), WB.2.
  7. P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films442(1-2), 74–79 (2003).
    [CrossRef]
  8. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a tool for the selection of the most manufacturable design,” Appl. Opt.51(36), 8677–8686 (2012).
    [CrossRef] [PubMed]
  9. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
    [CrossRef]
  10. D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE7101, 71010C, 71010C-14 (2008).
    [CrossRef]
  11. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt.45(7), 1495–1501 (2006).
    [CrossRef] [PubMed]
  12. H. E. Ehlers, S. S. Schlichting, C. S. Schmitz, and D. R. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett.8, 62–66 (2010).
    [CrossRef]
  13. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt.51(31), 7604–7615 (2012).
    [CrossRef] [PubMed]
  14. B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt.18(22), 3851–3856 (1979).
    [PubMed]
  15. H. A. Macleod, Thin-film Optical Filters, 4th ed, Series in Optics and Optoelectronics (CRC Press/Taylor & Francis, 2010).
  16. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt.50(9), C111–C116 (2011).
    [CrossRef] [PubMed]
  17. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
    [CrossRef]
  18. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express17(4), 2207–2217 (2009).
    [CrossRef] [PubMed]
  19. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express19(3), 2371–2380 (2011).
    [CrossRef] [PubMed]
  20. V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt.50(9), C55–C61 (2011).
    [CrossRef] [PubMed]
  21. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt.50(35), 6468–6475 (2011).
    [CrossRef] [PubMed]
  22. A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-posed Problems (Winston, 1977).
  23. D. Death, R. J. Francis, C. Bricker, T. Burt, and C. Colley, “The UMA: A new tool for multi-angle photometric spectroscopy,” in Optical Interference Coatings, OSA Technical Digest Series (2013), ThC.3.
  24. S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, 1992).
  25. O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. Express1(2), 278–292 (2011).
    [CrossRef]
  26. P. Baumeister, Optical Coating Technology (SPIE Optical Engineering Press, 2004).

2012

2011

2010

H. E. Ehlers, S. S. Schlichting, C. S. Schmitz, and D. R. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett.8, 62–66 (2010).
[CrossRef]

2009

2008

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt.47(13), C49–C54 (2008).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE7101, 71010C, 71010C-14 (2008).
[CrossRef]

2007

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

2006

2003

P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films442(1-2), 74–79 (2003).
[CrossRef]

1979

Ahmad, I.

Amotchkina, T. V.

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt.51(31), 7604–7615 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt.51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt.51(2), 245–254 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a tool for the selection of the most manufacturable design,” Appl. Opt.51(36), 8677–8686 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt.50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt.50(9), C111–C116 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt.50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

Apolonski, A.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

Biskupek, J.

Ehlers, H.

Ehlers, H. E.

H. E. Ehlers, S. S. Schlichting, C. S. Schmitz, and D. R. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett.8, 62–66 (2010).
[CrossRef]

Fornier, A.

Francis, R. J.

Fulop, J.

Gross, T.

Held, M.

Janicki, V.

Kaiser, N.

Kaiser, U.

Krausz, F.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

Lappschies, M.

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE7101, 71010C, 71010C-14 (2008).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt.45(7), 1495–1501 (2006).
[CrossRef] [PubMed]

Naumov, S.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

Pelletier, E.

Pervak, V.

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt.51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt.51(2), 245–254 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt.50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt.50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express19(3), 2371–2380 (2011).
[CrossRef] [PubMed]

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt.50(9), C55–C61 (2011).
[CrossRef] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express17(4), 2207–2217 (2009).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

Ristau, D.

Ristau, D. R.

H. E. Ehlers, S. S. Schlichting, C. S. Schmitz, and D. R. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett.8, 62–66 (2010).
[CrossRef]

Romanov, B.

Sancho-Parramon, J.

Schlichting, S.

Schlichting, S. S.

H. E. Ehlers, S. S. Schlichting, C. S. Schmitz, and D. R. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett.8, 62–66 (2010).
[CrossRef]

Schmitz, C. S.

H. E. Ehlers, S. S. Schlichting, C. S. Schmitz, and D. R. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett.8, 62–66 (2010).
[CrossRef]

Stenzel, O.

Tikhonravov, A. V.

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt.51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt.51(2), 245–254 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a tool for the selection of the most manufacturable design,” Appl. Opt.51(36), 8677–8686 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt.51(31), 7604–7615 (2012).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt.50(9), C111–C116 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt.50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express19(3), 2371–2380 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt.50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express17(4), 2207–2217 (2009).
[CrossRef] [PubMed]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt.47(13), C49–C54 (2008).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

Trubetskov, M. K.

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt.51(31), 7604–7615 (2012).
[CrossRef] [PubMed]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt.51(2), 245–254 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt.51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a tool for the selection of the most manufacturable design,” Appl. Opt.51(36), 8677–8686 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt.50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt.50(9), C111–C116 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt.50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express19(3), 2371–2380 (2011).
[CrossRef] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express17(4), 2207–2217 (2009).
[CrossRef] [PubMed]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt.47(13), C49–C54 (2008).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

Tünnermann, A.

van Nijnatten, P. A.

P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films442(1-2), 74–79 (2003).
[CrossRef]

Vidal, B.

Wilbrandt, S.

Yulin, S.

Zorc, H.

Appl. Opt.

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt.51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt.47(13), C49–C54 (2008).
[CrossRef] [PubMed]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt.51(2), 245–254 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt.50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a tool for the selection of the most manufacturable design,” Appl. Opt.51(36), 8677–8686 (2012).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt.45(7), 1495–1501 (2006).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt.51(31), 7604–7615 (2012).
[CrossRef] [PubMed]

B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt.18(22), 3851–3856 (1979).
[PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt.50(9), C111–C116 (2011).
[CrossRef] [PubMed]

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt.50(9), C55–C61 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt.50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

Appl. Phys. B

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B87(1), 5–12 (2007).
[CrossRef]

Chin. Opt. Lett.

H. E. Ehlers, S. S. Schlichting, C. S. Schmitz, and D. R. Ristau, “Adaptive manufacturing of high-precision optics based on virtual deposition and hybrid process control techniques,” Chin. Opt. Lett.8, 62–66 (2010).
[CrossRef]

Opt. Express

Opt. Mater. Express

Proc. SPIE

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE7101, 71010C, 71010C-14 (2008).
[CrossRef]

Thin Solid Films

P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films442(1-2), 74–79 (2003).
[CrossRef]

Other

A. V. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, and D. J. Smith, “Real-time characterization and optimization of E-beam evaporated optical coatings,” in Optical Interference Coatings, OSA Technical Digest Series (2001), ME8.

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, and V. Pervak, “Reverse engineering of an output coupler using broadband monitoring data and group delay measurements,” in Optical Interference Coatings, OSA Technical Digest Series (2013), WB.2.

H. A. Macleod, Thin-film Optical Filters, 4th ed, Series in Optics and Optoelectronics (CRC Press/Taylor & Francis, 2010).

P. Baumeister, Optical Coating Technology (SPIE Optical Engineering Press, 2004).

A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-posed Problems (Winston, 1977).

D. Death, R. J. Francis, C. Bricker, T. Burt, and C. Colley, “The UMA: A new tool for multi-angle photometric spectroscopy,” in Optical Interference Coatings, OSA Technical Digest Series (2013), ThC.3.

S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Comparison of near-normal incidence experimental and theoretical reflectance data related to HR400-BK7 sample (a). Fitting of experimental reflectance data by model reflectance data achieved by RE algorithm (b).

Fig. 2
Fig. 2

Estimated relative errors in layer thicknesses of 21-layer quarter-wave mirror.

Fig. 3
Fig. 3

Comparison of oblique incidence experimental and model reflectance data related to HR400-BK7 sample.

Fig. 4
Fig. 4

Comparison of experimental and theoretical near-normal incidence data (EF-Suprasil sample) (a). Fitting of experimental normal incidence transmittance data by model data (b).

Fig. 5
Fig. 5

Estimated relative errors in layer thicknesses of the edge filter coating (a). Comparison of oblique incidence experimental transmittance data related to EF-Suprasil sample with model transmittance (b).

Fig. 6
Fig. 6

Fittings of in situ experimental transmittance data (red crosses) by model transmittances (black solid curves) related to sample BS-Glass after the deposition of layer 13, 26, 39, and 52.

Fig. 7
Fig. 7

Fittings of normal incidence experimental transmittance data by model transmittance related to the sample AR-Glass (a). Estimated relative errors in layer thicknesses of the samples BS-Glass and AR-Glass (b).

Fig. 8
Fig. 8

Comparison of oblique incidence experimental transmittance data of the sample BS-AR-Glass with model transmittance: (a) non-polarized light at 45°, (b) s- and p-polarizations at 30°.

Fig. 9
Fig. 9

Comparison of in situ experimental transmittance data, ex situ experimental data and theoretical transmittance related to HR800-Glass sample (a). Fitting of in situ experimental transmittance data by model transmittances related to HR800-Glass sample (b).

Fig. 10
Fig. 10

Refractive indices of HfO2 layers: nominal, average in situ and ex situ (a). Estimated relative errors in layer thicknesses of 43-layer quarter-wave mirror (b).

Fig. 11
Fig. 11

Comparison of normal (a) and AOI = 45° (b) experimental transmittance data related to HR800-FusedSilica sample with model transmittances calculated for intermediate design.

Fig. 12
Fig. 12

Final fitting of normal (a) and oblique incidence AOI = 45° (b) experimental transmittance data related to HR800-FusedSilica sample by model transmittances.

Fig. 13
Fig. 13

Comparison of normal incidence experimental data related to the second deposition run and theoretical transmittance data (a). Model reflectance at AOI = 45° after additional RE procedure (b).

Tables (2)

Tables Icon

Table 1 Refractive indices of layer materials and substrates (λ should be expressed in µm).

Tables Icon

Table 2 Design structures considered in Sections 3−5, layer numbers LN starts from the substrate, physical thicknesses and layer materials are listed.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D F 2 = 1 L j=1 L [ R(X; λ j ) R ^ ( λ j ) ] 2 ,
R(X,λ)=R((1+ δ 1 ) d 1 ,,(1+ δ N ) d N ; n H (λ), n L (λ);λ),
MD F 2 = 1 NL i=1 N j=1 L [ T (i) ( X i ; λ j ) T ^ (i) ( λ j ) ] 2 .
T( X i ;λ)=T( d 1 ,, d i ; n H (λ)(1+ h H ), n L (λ)(1+ h L );λ).
T( X i ;λ)=T( d 1 (1+ δ 1 ),, d i (1+ δ i ); n ˜ H (λ), n ˜ L (λ);λ).
GMD F 2 = 1 NL i=1 N j=1 L [ T (i) ( X i ; λ j ) T ^ (i) ( λ j ) ] 2 +α 1 N i=1 N δ i 2 ,
T (i) ( X i ;λ)= T (i) ( d 1 (1+ δ 1 ),, d i (1+ δ i ); n H (λ), n L (λ);λ).
T (i) ( X i ;λ)= T (i) ( d 1 (1+ δ 1 ),, d i (1+ δ i ); n H (1+ h H,1 ), n L ,..., n H (1+ h H,i );λ).
δ=( n + n )/ n av ,
D F 2 = 1 2L j=1 L [ T(X; λ j ) T ^ ( λ j ) ] 2 + 1 2L j=1 L [ R(X; λ j ) R ^ ( λ j ) ] 2 ,
T(X;λ)=T( d ˜ 1 ,, d ˜ N ; n H + h H , n L ; δ H ;λ).

Metrics