Abstract

We study the effect of realistically rounding nanorod antennae and gap antennae on their far field and near field properties. The simulations show that both scattering behaviour and polarisation charge distribution depend significantly on rounding. Rounding is also seen to have a major effect on coupling between nanostructures. The results suggest that it is important to incorporate the effect of rounding to be able to design plasmonic nanostructures with desired properties.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966).
    [CrossRef]
  3. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975).
    [CrossRef]
  4. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University, 2003).
    [CrossRef]
  5. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.103, 869–875 (1995).
    [CrossRef]
  6. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E58, 3909–3915 (1998).
    [CrossRef]
  7. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
    [CrossRef]
  8. U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B72,195429 (2005).
    [CrossRef]
  9. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am.26, 732–740 (2009).
    [CrossRef]
  10. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
    [CrossRef] [PubMed]
  11. X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
    [CrossRef]
  12. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
    [CrossRef] [PubMed]
  13. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  14. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
    [CrossRef] [PubMed]
  15. N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
    [CrossRef] [PubMed]
  16. N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
    [CrossRef]
  17. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B11, 1732–1740 (1975).
    [CrossRef]
  18. M. A. Yurkin and M. Kahnert, “Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer123, 176–183 (2013).
    [CrossRef]
  19. W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).
  20. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
    [CrossRef] [PubMed]
  21. M. Rycenga, J. M. McLellan, and Y. Xia, “Controlling the assembly of silver nanocubes through selective functionalization of their faces,” Adv. Mater.20, 2416–2420 (2008).
    [CrossRef]
  22. H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
    [CrossRef] [PubMed]
  23. W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).
  24. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).
  25. N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
    [CrossRef] [PubMed]
  26. M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012).
    [CrossRef] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  28. A. M. Kern and O. J. F. Martin, “Pitfalls in the determination of optical cross sections from surface integral equation simulations,” IEEE Trans. Antennas Propag.58, 2158–2161 (2010).
    [CrossRef]
  29. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
    [CrossRef] [PubMed]
  30. A. Unger and M. Kreiter, “Analysing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C113, 12243–12251 (2009).
    [CrossRef]
  31. A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013).
    [CrossRef] [PubMed]

2013 (2)

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer123, 176–183 (2013).
[CrossRef]

A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013).
[CrossRef] [PubMed]

2012 (1)

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012).
[CrossRef] [PubMed]

2011 (4)

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

2010 (1)

A. M. Kern and O. J. F. Martin, “Pitfalls in the determination of optical cross sections from surface integral equation simulations,” IEEE Trans. Antennas Propag.58, 2158–2161 (2010).
[CrossRef]

2009 (8)

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).

A. Unger and M. Kreiter, “Analysing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C113, 12243–12251 (2009).
[CrossRef]

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
[CrossRef]

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am.26, 732–740 (2009).
[CrossRef]

2008 (3)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
[CrossRef] [PubMed]

M. Rycenga, J. M. McLellan, and Y. Xia, “Controlling the assembly of silver nanocubes through selective functionalization of their faces,” Adv. Mater.20, 2416–2420 (2008).
[CrossRef]

2005 (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B72,195429 (2005).
[CrossRef]

2002 (1)

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
[CrossRef]

1998 (1)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E58, 3909–3915 (1998).
[CrossRef]

1995 (1)

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.103, 869–875 (1995).
[CrossRef]

1975 (2)

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975).
[CrossRef]

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B11, 1732–1740 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Arnold, M. D.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012).
[CrossRef] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
[CrossRef] [PubMed]

Bertorelle, F.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Bonnet, C.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Brodwin, M. E.

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975).
[CrossRef]

Broyer, M.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Camargo, P. H. C.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Chen, H.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

Cortie, M. B.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012).
[CrossRef] [PubMed]

Cottancin, E.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Fuchs, R.

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B11, 1732–1740 (1975).
[CrossRef]

Gallinet, B.

A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013).
[CrossRef] [PubMed]

Galush, W. J.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

García de Abajo, F. J.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Grillet, N.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Groves, J. T.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Hillenkamp, M.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Hohenester, U.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B72,195429 (2005).
[CrossRef]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

K¨astel, J.

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Kahnert, M.

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer123, 176–183 (2013).
[CrossRef]

Kern, A. M.

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Pitfalls in the determination of optical cross sections from surface integral equation simulations,” IEEE Trans. Antennas Propag.58, 2158–2161 (2010).
[CrossRef]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am.26, 732–740 (2009).
[CrossRef]

Kreiter, M.

A. Unger and M. Kreiter, “Analysing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C113, 12243–12251 (2009).
[CrossRef]

Krenn, J.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B72,195429 (2005).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Lermé, J.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).

Lin, H.-Q.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Liu, F.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Lovera, A.

A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013).
[CrossRef] [PubMed]

Lu, X.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
[CrossRef]

Maier, S. A.

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Manchon, D.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Pitfalls in the determination of optical cross sections from surface integral equation simulations,” IEEE Trans. Antennas Propag.58, 2158–2161 (2010).
[CrossRef]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am.26, 732–740 (2009).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E58, 3909–3915 (1998).
[CrossRef]

McLellan, J. M.

M. Rycenga, J. M. McLellan, and Y. Xia, “Controlling the assembly of silver nanocubes through selective functionalization of their faces,” Adv. Mater.20, 2416–2420 (2008).
[CrossRef]

Monk, P.

P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University, 2003).
[CrossRef]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mulvihill, M. J.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

Ni, W.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Niidome, Y.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012).
[CrossRef] [PubMed]

Norlander, P.

A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Pellarin, M.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Piller, N. B.

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E58, 3909–3915 (1998).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
[CrossRef]

M. Rycenga, J. M. McLellan, and Y. Xia, “Controlling the assembly of silver nanocubes through selective functionalization of their faces,” Adv. Mater.20, 2416–2420 (2008).
[CrossRef]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.103, 869–875 (1995).
[CrossRef]

Shelby, S. A.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Skrabalak, S. E.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
[CrossRef]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Sun, L.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Sun, Z.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975).
[CrossRef]

Tao, A.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Unger, A.

A. Unger and M. Kreiter, “Analysing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C113, 12243–12251 (2009).
[CrossRef]

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.103, 869–875 (1995).
[CrossRef]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

Wang, J.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Wiley, B.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
[CrossRef]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Woo, K. C.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Xia, L.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
[CrossRef]

M. Rycenga, J. M. McLellan, and Y. Xia, “Controlling the assembly of silver nanocubes through selective functionalization of their faces,” Adv. Mater.20, 2416–2420 (2008).
[CrossRef]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
[CrossRef] [PubMed]

Yan, C.

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Yang, P.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

Yang, W.-H.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.103, 869–875 (1995).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966).
[CrossRef]

Yurkin, M. A.

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer123, 176–183 (2013).
[CrossRef]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
[CrossRef] [PubMed]

ACS Nano (2)

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding,” ACS Nano5, 9450–9462 (2011).
[CrossRef] [PubMed]

A. Lovera, B. Gallinet, P. Norlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7, 4527–4536 (2013).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. Rycenga, J. M. McLellan, and Y. Xia, “Controlling the assembly of silver nanocubes through selective functionalization of their faces,” Adv. Mater.20, 2416–2420 (2008).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem.60, 167–192 (2009).
[CrossRef]

Chem. Rev. (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111, 3669–3712 (2011).

IEEE Trans. Antennas Propag. (2)

A. M. Kern and O. J. F. Martin, “Pitfalls in the determination of optical cross sections from surface integral equation simulations,” IEEE Trans. Antennas Propag.58, 2158–2161 (2010).
[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975).
[CrossRef]

J. Chem. Phys. (1)

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.103, 869–875 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am.26, 732–740 (2009).
[CrossRef]

J. Phys. Chem. C (1)

A. Unger and M. Kreiter, “Analysing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C113, 12243–12251 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer123, 176–183 (2013).
[CrossRef]

Langmuir (1)

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir28, 9103–9112 (2012).
[CrossRef] [PubMed]

Nano Lett. (6)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Norlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11, 1657–1663 (2011).
[CrossRef] [PubMed]

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett.9, 485–490 (2009).

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett.9, 2077–2082 (2009).

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and L. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, V. V. Moshchalkov, P. Van Dorpe, P. Norlander, and S. A. Maier, “Fano resonances in coherent plasmonic nanocavities,” Nano Lett.9, 1663–1667 (2009).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

Nature Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009).
[CrossRef]

Phys. Rev. B (4)

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B11, 1732–1740 (1975).
[CrossRef]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
[CrossRef]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B72,195429 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. E (1)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E58, 3909–3915 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008).
[CrossRef] [PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Small (1)

H. Chen, Z. Sun, W. Ni, K. C. Woo, H.-Q. Lin, L. Sun, C. Yan, and J. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small5, 2111–2119 (2009).
[CrossRef] [PubMed]

Other (2)

P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University, 2003).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Left) The individual pieces which can be used to assemble the rounded cuboid. The cuboids, quarter-cylinders and sphere-octants have been coloured blue, green and red, respectively. (Centre) The rounded cuboid formed from the constituents. (Right) SEM image of silver nanocubes.

Fig. 2
Fig. 2

Scattering cross section as a function of wavelength for various rounding radii (r) of the cube.

Fig. 3
Fig. 3

Normalised polarisation charges on the surface of rounded nanocubes. From left to right: Rounding radius of 3 nm, 9 nm, 15 nm.

Fig. 4
Fig. 4

Scattering cross section as a function of wavelength for a silver cuboid of 20 nm length, 40 nm × 40 nm cross section and rounding radius of 4 nm

Fig. 5
Fig. 5

Normalised polarisation charges on the surface of the 20 nm × 40 nm × 40 nm antenna for the three scattering peaks in Fig. 4. The figures, from left to right, correspond to the peaks from left to right, respectively.

Fig. 6
Fig. 6

The peak wavelength shift relative to an ideal structure for various values of rounding radii for (Left) Silver and (Right) Gold.

Fig. 7
Fig. 7

Normalised polarisation charges at the peak scattering wavelength for (Left) a single 60 nm × 40 nm × 40 nm cuboid with a rounding radius of 3 nm and the gap-facing surface of a (Centre) gap antenna with two such cuboids separated by 10 nm and (Right) a similar gap antenna but with a rounding of 9 nm.

Fig. 8
Fig. 8

The relationship between various wavelength shifts.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C s c = 1 2 Re [ E s c × H s c * ] d S | 1 2 Re [ E in × H in * ] |
σ p = E out E in ε 0 n ^ .

Metrics