Abstract

We have experimentally studied the plasmon resonance phenomenon of a silver micro–sphere with a diameter of 2.3μm in cone–shaped air cavity of a hollow fiber taper. To take insight into the plasmon resonance phenomenon, we move the micro–sphere along the fiber and observe the significant shift of the resonance peak. We also explore the light response in both infrared and visible wavelength band by finite difference time domain method. The significant variations of the magnetic and power field distribution are observed. The interesting results imply that the configuration has great potential in optical sensors and color filters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Kim and D. J. Jang, “Laser–induced nanowelding of gold nanoparticles,” Appl. Phys. Lett.86(3), 033112 (2005).
    [CrossRef]
  2. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012).
    [CrossRef] [PubMed]
  3. N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide–angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
    [CrossRef]
  4. J. Jayabalan, A. Singh, and R. Chari, “Effect of edge smoothening on the extinction spectra of metal nanoparticles,” Appl. Phys. Lett.97(4), 041904 (2010).
    [CrossRef]
  5. M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold,” Plasmonics7(2), 347–351 (2012).
    [CrossRef]
  6. L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007).
    [CrossRef]
  7. F. Buatier de Mongeot and U. Valbusa, “Applications of metal surfaces nanostructured by ion beam sputtering,” J. Phys. Condens. Matter21(22), 224022 (2009).
    [CrossRef] [PubMed]
  8. G. Bachelier, I. R. Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second–harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6), 955–960 (2008).
    [CrossRef]
  9. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two–dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
    [CrossRef]
  10. F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007).
    [CrossRef]
  11. H. Y. Li, Y. D. Zhang, J. Li, and L. S. Qiang, “Observation of microsphere movement driven by optical pulse,” Opt. Lett.36(11), 1996–1998 (2011).
    [CrossRef] [PubMed]
  12. A. A. Earp and G. B. Smith, “Metal nanoparticle plasmonics inside reflecting metal films,” Appl. Phys. Lett.96(24), 243108 (2010).
    [CrossRef]
  13. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
    [CrossRef] [PubMed]
  14. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
    [CrossRef]
  15. S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express16(14), 10684–10689 (2008).
    [CrossRef] [PubMed]
  16. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
    [CrossRef]
  17. T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett.36(4), 442–444 (2011).
    [CrossRef] [PubMed]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 5.
  19. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003).
    [CrossRef]

2012 (3)

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide–angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold,” Plasmonics7(2), 347–351 (2012).
[CrossRef]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

A. A. Earp and G. B. Smith, “Metal nanoparticle plasmonics inside reflecting metal films,” Appl. Phys. Lett.96(24), 243108 (2010).
[CrossRef]

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
[CrossRef]

J. Jayabalan, A. Singh, and R. Chari, “Effect of edge smoothening on the extinction spectra of metal nanoparticles,” Appl. Phys. Lett.97(4), 041904 (2010).
[CrossRef]

2009 (2)

F. Buatier de Mongeot and U. Valbusa, “Applications of metal surfaces nanostructured by ion beam sputtering,” J. Phys. Condens. Matter21(22), 224022 (2009).
[CrossRef] [PubMed]

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

2008 (2)

2007 (2)

F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007).
[CrossRef]

L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007).
[CrossRef]

2005 (1)

S. J. Kim and D. J. Jang, “Laser–induced nanowelding of gold nanoparticles,” Appl. Phys. Lett.86(3), 033112 (2005).
[CrossRef]

2003 (2)

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

Antoine, I. R.

Bachelier, G.

Benichou, E.

Bethge, J.

Bohman, S.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
[CrossRef]

S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express16(14), 10684–10689 (2008).
[CrossRef] [PubMed]

Brevet, P. F.

Buatier de Mongeot, F.

F. Buatier de Mongeot and U. Valbusa, “Applications of metal surfaces nanostructured by ion beam sputtering,” J. Phys. Condens. Matter21(22), 224022 (2009).
[CrossRef] [PubMed]

Cao, M.

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold,” Plasmonics7(2), 347–351 (2012).
[CrossRef]

Chari, R.

J. Jayabalan, A. Singh, and R. Chari, “Effect of edge smoothening on the extinction spectra of metal nanoparticles,” Appl. Phys. Lett.97(4), 041904 (2010).
[CrossRef]

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Earp, A. A.

A. A. Earp and G. B. Smith, “Metal nanoparticle plasmonics inside reflecting metal films,” Appl. Phys. Lett.96(24), 243108 (2010).
[CrossRef]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003).
[CrossRef]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two–dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

Gao, L.

L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007).
[CrossRef]

Gu, M.

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide–angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

Gu, N.

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold,” Plasmonics7(2), 347–351 (2012).
[CrossRef]

He, S. L.

L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007).
[CrossRef]

Jang, D. J.

S. J. Kim and D. J. Jang, “Laser–induced nanowelding of gold nanoparticles,” Appl. Phys. Lett.86(3), 033112 (2005).
[CrossRef]

Jayabalan, J.

J. Jayabalan, A. Singh, and R. Chari, “Effect of edge smoothening on the extinction spectra of metal nanoparticles,” Appl. Phys. Lett.97(4), 041904 (2010).
[CrossRef]

Jia, B. H.

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide–angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

Jonin, C.

Juodkazis, S.

Kaku, M.

Kanai, T.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
[CrossRef]

S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express16(14), 10684–10689 (2008).
[CrossRef] [PubMed]

Kim, S. J.

S. J. Kim and D. J. Jang, “Laser–induced nanowelding of gold nanoparticles,” Appl. Phys. Lett.86(3), 033112 (2005).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

Koenderink, F.

F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007).
[CrossRef]

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003).
[CrossRef]

Le, T.

Li, B.

L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007).
[CrossRef]

Li, H. Y.

Li, J.

Lu, P.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Midorikawa, K.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
[CrossRef]

S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express16(14), 10684–10689 (2008).
[CrossRef] [PubMed]

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003).
[CrossRef]

Nishijima, Y.

Nurhuda, M.

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two–dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

Polman, A.

F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007).
[CrossRef]

Prangsma, J. C.

F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007).
[CrossRef]

Qiang, L. S.

Rosa, L.

Shi, L. H.

L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007).
[CrossRef]

Singh, A.

J. Jayabalan, A. Singh, and R. Chari, “Effect of edge smoothening on the extinction spectra of metal nanoparticles,” Appl. Phys. Lett.97(4), 041904 (2010).
[CrossRef]

Skibina, J.

Smith, G. B.

A. A. Earp and G. B. Smith, “Metal nanoparticle plasmonics inside reflecting metal films,” Appl. Phys. Lett.96(24), 243108 (2010).
[CrossRef]

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

Steinmeyer, G.

Stokes, N.

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide–angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

Suda, A.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
[CrossRef]

S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express16(14), 10684–10689 (2008).
[CrossRef] [PubMed]

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

Valbusa, U.

F. Buatier de Mongeot and U. Valbusa, “Applications of metal surfaces nanostructured by ion beam sputtering,” J. Phys. Condens. Matter21(22), 224022 (2009).
[CrossRef] [PubMed]

Waele, R. E.

F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007).
[CrossRef]

Wang, M.

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold,” Plasmonics7(2), 347–351 (2012).
[CrossRef]

Yamaguchi, S.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
[CrossRef]

S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express16(14), 10684–10689 (2008).
[CrossRef] [PubMed]

Zhang, Y. D.

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two–dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

Appl. Phys. Lett. (6)

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide–angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

J. Jayabalan, A. Singh, and R. Chari, “Effect of edge smoothening on the extinction spectra of metal nanoparticles,” Appl. Phys. Lett.97(4), 041904 (2010).
[CrossRef]

S. J. Kim and D. J. Jang, “Laser–induced nanowelding of gold nanoparticles,” Appl. Phys. Lett.86(3), 033112 (2005).
[CrossRef]

A. A. Earp and G. B. Smith, “Metal nanoparticle plasmonics inside reflecting metal films,” Appl. Phys. Lett.96(24), 243108 (2010).
[CrossRef]

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.83(22), 4625 (2003).
[CrossRef]

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

J. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two–dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

F. Buatier de Mongeot and U. Valbusa, “Applications of metal surfaces nanostructured by ion beam sputtering,” J. Phys. Condens. Matter21(22), 224022 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Optim. Lett. (1)

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow–fiber pulse compression,” Optim. Lett.35(11), 1887–1889 (2010).
[CrossRef]

Phys. Rev. B (2)

L. H. Shi, L. Gao, S. L. He, and B. Li, “Superlens from metal–dielectric composites of nonspherical particles,” Phys. Rev. B76(4), 045116 (2007).
[CrossRef]

F. Koenderink, R. E. Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B76(20), 201403 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

Plasmonics (1)

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold,” Plasmonics7(2), 347–351 (2012).
[CrossRef]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The micrograph of the fiber taper with a cone–shaped air chamber and the preparation of the experimental configuration; (a) the fine fiber and the micro–silver sphere in the direct–part of the fiber taper; (b) the fine fiber and the silver micro–sphere near the air cone of the fiber taper; (c) the fine fiber and the silver micro–sphere in the fiber taper; (d) withdrawal of the fine fiber from the fiber taper.

Fig. 2
Fig. 2

Schematic diagram of experimental setup. The input fiber and output fiber are fixed by the fiber clips. The position of the fibers can be controlled by adjusting the three–dimensional adjustment. The microscope is used for observing optical fiber, which is aligned on an MgF2 chip. The two spectra show the light source (left) and output light (right), respectively.

Fig. 3
Fig. 3

The transmission spectra of two micron hollow fiber cones with different diameters (9.6μm and 5.8μm).

Fig. 4
Fig. 4

The transmission spectra of the fiber taper as a function of the locations of a silver micro–sphere of 2.3μm diameter in it. The different locations are illustrated by the insets in the upper left inset, which correspond to the spectra from right to left, respectively.

Fig. 5
Fig. 5

The simulated transmission spectra of the fiber taper from wavelength 1520nm to 1560nm. a, b and c insets are the corresponding picture of the curve a, b and c, respectively.

Fig. 6
Fig. 6

(a) The center peak intensity and location of reflected light as a function of the external refractive index from 1.0 to 2.0 using TM polarized light. (b) The center peak intensity as a function of the external refractive index from 1.6 to 2.0, which is the enlarged part of the dashed box in (a).

Fig. 7
Fig. 7

The magnetic intensity distribution (2) and the light intensity distribution (3) of the explored configuration without and with the silver micro–sphere at different locations (a, b, c, d) using TM polarization light source. The diameter of the sphere is 2.3μm.

Fig. 8
Fig. 8

The magnetic intensity distribution (2) and the light intensity distribution (3) of the explored configuration without and with the silver micro–sphere at different locations (a, b, c, d) using TE polarization light source. The diameter of the sphere is 2.3μm.

Fig. 9
Fig. 9

The Q value as a function of the taper angle of the taper cone.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α= 1( 1 10 )( ε+ ε m ) x 2 +O( x 4 ) ( 1 3 + ε m ε+ ε m ) 1 30 ( ε+10 ε m ) x 2 i 4π2 ε m 3/2 3 V λ 0 3 +O( x 4 ) V.
Q ω p 2 ω 2 1( ω 2 / ω p 2 ) ( ε 1 ε m ) 2 A( L ) x 2 ε 2 + 4 π 2 ε m 1/2 3 V λ 0 3 ( ε 1 ε m ) 2 .

Metrics