Abstract

An ultra-compact multimode-interference (MMI)-based 1×4 nano-photonic switch is demonstrated by employing silicon thermo-optical effect on SOI platform. The device performance is systematically characterized by comprehensively investigating the constituent building blocks, including 1×4 power splitter, 4×4 MMI coupler and groove-isolated thermo-optical heaters. An instructive model is established to statistically estimate the required power consumption and investigate the influence of the power imbalance of the 4×4 MMI coupler on the switching performance. At the designed wavelength of 1550 nm, the average insertion loss of different switching states is 1.7 dB, and the transmission imbalance is 1.05 dB. The worst extinction ratio and crosstalk of all the output ports reach 11.48 dB and −11.38 dB, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Xu, H. G. Perros, and G. Rouskas, “Techniques for Optical Packet Switching and Optical Burst Switching,” IEEE Commun. Mag.136–142 (2001).
  2. M. J. O Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of Optical Packet Switching in Future Communication Networks,” IEEE Commun. Mag.128–135, (2001).
    [CrossRef]
  3. S.-L. Tsao and Y.-H. Lin, “64×64 silicon-on-insulator arrayed waveguide grating mux/demux for optical interconnections,” in Photonic Devices and Algorithms for Computing VI,K. M. Iftekharuddin and A. A. Awwal, eds., Proc. SPIE 5556, 288–296 (2004).
    [CrossRef]
  4. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
    [CrossRef]
  5. J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
    [CrossRef]
  6. R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
    [CrossRef]
  7. S. Tomofuji, S. Matsuo, T. Kakitsuka, and K. I. Kitayama, “Dynamic switching characteristics of InGaAsP/InP multimode interference optical waveguide switch,” Opt. Express17, 23380–23388 (2009).
    [CrossRef]
  8. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1×N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express13, 10109–10114 (2005).
    [CrossRef] [PubMed]
  9. J. F. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express16, 15304–15311 (2008).
    [CrossRef] [PubMed]
  10. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N× Nmulti-mode interference couplers including phase relations,” Appl. Opt.33, 3905–3911 (1994).
    [CrossRef] [PubMed]
  11. H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Electro-optical logic application of multimode interference coupler by multi-valued controlling,” Appl. Opt.50, 2299–2304 (2011).
    [CrossRef] [PubMed]
  12. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20, 6163–6169 (2012).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

2009 (1)

2008 (1)

2005 (1)

2004 (1)

S.-L. Tsao and Y.-H. Lin, “64×64 silicon-on-insulator arrayed waveguide grating mux/demux for optical interconnections,” in Photonic Devices and Algorithms for Computing VI,K. M. Iftekharuddin and A. A. Awwal, eds., Proc. SPIE 5556, 288–296 (2004).
[CrossRef]

2003 (1)

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

2001 (2)

L. S. Xu, H. G. Perros, and G. Rouskas, “Techniques for Optical Packet Switching and Optical Burst Switching,” IEEE Commun. Mag.136–142 (2001).

M. J. O Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of Optical Packet Switching in Future Communication Networks,” IEEE Commun. Mag.128–135, (2001).
[CrossRef]

1994 (2)

M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N× Nmulti-mode interference couplers including phase relations,” Appl. Opt.33, 3905–3911 (1994).
[CrossRef] [PubMed]

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

1992 (1)

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

Aksyuk, V. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Arakawa, Y.

Arney, S.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Bachmann, M.

Basavanhally, N. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Besse, P. A.

Birbeck, J. C. H.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

Bolle, C. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Chan, H. B.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Chen, L.

Chen, Y.-K.

Chu, T.

Dong, P.

Fang, Q.

Frahm, R. E.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Gasparyan, A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Gates, J. V.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Haueis, M.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Heaton, J. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

Hilton, K. P.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

Hunter, D. K.

M. J. O Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of Optical Packet Switching in Future Communication Networks,” IEEE Commun. Mag.128–135, (2001).
[CrossRef]

Ishida, S.

Jenkins, R. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

Jiang, X. Q.

Kakitsuka, T.

Kim, J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Kitayama, K. I.

Kolodner, P. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Kraus, J. S.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Kumar, B.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Kwong, D. L.

Lichtenwalner, C. P.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Lieuwn, D. F.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Lifton, V.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Lin, Y.-H.

S.-L. Tsao and Y.-H. Lin, “64×64 silicon-on-insulator arrayed waveguide grating mux/demux for optical interconnections,” in Photonic Devices and Algorithms for Computing VI,K. M. Iftekharuddin and A. A. Awwal, eds., Proc. SPIE 5556, 288–296 (2004).
[CrossRef]

Liow, T. Y.

Lo, G. Q.

Mahony, M. J. O

M. J. O Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of Optical Packet Switching in Future Communication Networks,” IEEE Commun. Mag.128–135, (2001).
[CrossRef]

Matsuo, S.

Melchior, H.

Neilson, D. T.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Nuzman, C. J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Papazian, A. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Pardo, F.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Parker, J. T.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

Perros, H. G.

L. S. Xu, H. G. Perros, and G. Rouskas, “Techniques for Optical Packet Switching and Optical Burst Switching,” IEEE Commun. Mag.136–142 (2001).

Ramsey, D. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Rouskas, G.

L. S. Xu, H. G. Perros, and G. Rouskas, “Techniques for Optical Packet Switching and Optical Burst Switching,” IEEE Commun. Mag.136–142 (2001).

Ryf, R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Shea, H. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Simeonidou, D.

M. J. O Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of Optical Packet Switching in Future Communication Networks,” IEEE Commun. Mag.128–135, (2001).
[CrossRef]

Simon, M. E.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Smith, G. W.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

Song, J. F.

Tao, S. H.

Tomofuji, S.

Tsao, S.-L.

S.-L. Tsao and Y.-H. Lin, “64×64 silicon-on-insulator arrayed waveguide grating mux/demux for optical interconnections,” in Photonic Devices and Algorithms for Computing VI,K. M. Iftekharuddin and A. A. Awwal, eds., Proc. SPIE 5556, 288–296 (2004).
[CrossRef]

Tzanakaki, A.

M. J. O Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of Optical Packet Switching in Future Communication Networks,” IEEE Commun. Mag.128–135, (2001).
[CrossRef]

Wang, M. H.

Wang, W. J.

Weiss, A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Wight, D. R.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

Xu, L. S.

L. S. Xu, H. G. Perros, and G. Rouskas, “Techniques for Optical Packet Switching and Optical Burst Switching,” IEEE Commun. Mag.136–142 (2001).

Yamada, H.

Yang, J. Y.

Yu, M. B.

Zhou, H. F.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguide,” Appl. Phys. Lett.15, 1754–1756 (1992).
[CrossRef]

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 × Nand N× Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett.64, 684–686 (1994).
[CrossRef]

IEEE Commun. Mag. (2)

L. S. Xu, H. G. Perros, and G. Rouskas, “Techniques for Optical Packet Switching and Optical Burst Switching,” IEEE Commun. Mag.136–142 (2001).

M. J. O Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of Optical Packet Switching in Future Communication Networks,” IEEE Commun. Mag.128–135, (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwn, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 Port MEMS-Based Optical Crossconnect With 4-dB Maximum Loss,” IEEE Photon. Technol. Lett.15, 1537–1539 (2003).
[CrossRef]

Opt. Express (4)

Photonic Devices and Algorithms for Computing VI (1)

S.-L. Tsao and Y.-H. Lin, “64×64 silicon-on-insulator arrayed waveguide grating mux/demux for optical interconnections,” in Photonic Devices and Algorithms for Computing VI,K. M. Iftekharuddin and A. A. Awwal, eds., Proc. SPIE 5556, 288–296 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Microscope image of the fabricated 1 × 4 MMI-based optical switch and (b) the z-cut cross-sectional view in the arm region with thermo-heater. In (a), the electrode pads can act as a scale bar, whose widths are 70 μm. The total length of the two MMI sections is just 21 μm. The active part of the thermo-heater is 185 μm long and 2.0 μm wide. dArm is set to be 30 μm.

Fig. 2
Fig. 2

(a) The Scanning-electron-microscope (SEM) image of a typical 1×4 optical splitter. The dependence of (b) insertion loss and (c) power imbalance on the MMI section length L, whose ratios to the baseline LMMI value varying with a step of 2.0% are shown in the legend.

Fig. 3
Fig. 3

The wavelength dependence of (a) the insertion loss and (b) power imbalance of the 4 × 4 MMI coupler. The cases with different input port excited are distinguished in color. The loss and imbalance are calculated with different input port excited. The unexpected oscillations around 1560nm were actually found throughout the C band in the raw transmission data, which might be attributed to the reflection wave interference within the MMI section.

Fig. 4
Fig. 4

Tolerance analysis on the influence of the quality of a 4 × 4 MMI coupler to the switching crosstalk of the 1 × 4 MMI-based optical switch.

Fig. 5
Fig. 5

(a) The field amplitude at the port O2 varies with voltage that was only applied onto the 3rd arm. (b) The complex field at port O2 at iterations that sweep voltage alternatively to maximize the transmission. The three numbers in the legend are the voltages applied to the three interferometric arms. (a) is correspondent to the first iteration in (b).

Fig. 6
Fig. 6

The wavelength dependent transmission under different voltage combinations listed in Table 2. The transmissions at different output ports are distinguished in color.

Fig. 7
Fig. 7

The dynamic response of the thermo-heater. A continuous electric square signal was applied to invoke the heaters for producing the highest transmission of O2. The markers ”start” and ”stop” in time denotes the time period of 1 bit non-return-to-zero signal. The time interval is 50 μs, corresponding to a frequency of 20 kHz. The rise time and fall time are the time intervals between 10% and 90% transmissions.

Tables (2)

Tables Icon

Table 1 The phase modulations on the interferometric arms required by the four switching states. The cases (a–c) are equivalent in phase but distinct from each other in magnitude.

Tables Icon

Table 2 Light transmissions under the optimal phase modulations at 1550 nm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ nl = ϕ 0 π 2 ( 1 ) n + l + N π 4 N × [ ( 1 ) n ( n 1 2 ) ( 1 ) N + l ( l 1 2 ) ] 2 ,
ψ 4 × 4 = ( 0 3 4 1 4 0 3 4 0 0 1 4 1 4 0 0 3 4 0 1 4 3 4 0 ) π .
r l exp ( i ϕ l ) = n = 1 4 T nl 4 × 4 r n exp [ j ( ϕ n mod + ϕ n const + ϕ n 1 × 4 ) ] ,
ϕ mod ¯ = 1 4 state n = 1 4 | ϕ n mod | ϕ n const = 0 ϕ n const ϕ state ref m n 2 π | ,
T n , l 4 × 4 = 1 2 [ 1 σ M 4 × 4 rand ( ) ] exp { j [ ψ n , l 4 × 4 + σ M 4 × 4 ( rand ( ) 1 2 ) π ] } .
E 2 = T 32 r 3 exp [ i ( ϕ 3 mod + ϕ 3 const + ϕ 3 1 × 4 ) ] + n 3 T nl r n exp [ i ( ψ n ) ] .

Metrics