Abstract

Due to its high electrical conductivity and excellent transmittance at terahertz frequencies, graphene is a promising candidate as transparent electrodes for terahertz devices. We demonstrate a liquid crystal based terahertz phase shifter with the graphene films as transparent electrodes. The maximum phase shift is 10.8 degree and the saturation voltage is 5 V with a 50 µm liquid crystal cell. The transmittance at terahertz frequencies and electrical conductivity depending on the number of graphene layer are also investigated. The proposed phase shifter provides a continuous tunability, fully electrical controllability, and low DC voltage operation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim, “Graphene: status and prospects,” Science324(5934), 1530–1534 (2009).
    [CrossRef] [PubMed]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  3. K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
    [CrossRef]
  4. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
    [CrossRef] [PubMed]
  5. J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van der Zande, R. A. Barton, P. L. McEuen, E. D. Minot, and Y. S. Lee, “Terahertz imaging and spectroscopy of large-area single-layer graphene,” Opt. Express19(1), 141–146 (2011).
    [CrossRef] [PubMed]
  6. J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
    [CrossRef]
  7. C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
    [CrossRef]
  8. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50(3), 910–928 (2002).
    [CrossRef]
  9. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  10. H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
    [CrossRef] [PubMed]
  11. L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
    [CrossRef] [PubMed]
  12. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
    [CrossRef] [PubMed]
  13. B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
    [CrossRef] [PubMed]
  14. I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
    [CrossRef] [PubMed]
  15. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31(8), 1112–1114 (2006).
    [CrossRef] [PubMed]
  16. C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett.83(22), 4497–4499 (2003).
    [CrossRef]
  17. D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253(2), 409–411 (2006).
    [CrossRef]
  18. E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
    [CrossRef]
  19. M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
    [CrossRef]
  20. Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
    [CrossRef] [PubMed]
  21. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
    [CrossRef] [PubMed]
  22. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
    [CrossRef] [PubMed]
  23. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  24. Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
    [CrossRef]
  25. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
    [CrossRef] [PubMed]
  26. J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
    [CrossRef]
  27. R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
    [CrossRef]
  28. N. Palka, “THz reflection spectroscopy of explosives measured by time domain spectroscopy,” Acta Phys. Pol. A120, 713–715 (2011).
  29. J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
    [CrossRef] [PubMed]
  30. S. Chandrasekhar, “Liquid-Crystals,” Rep. Prog. Phys.39(7), 613–692 (1976).
    [CrossRef]
  31. S. P. Yadav, K. K. Pandey, A. K. Misra, and R. Manohar, “Electro-optical behavior of dye doped nematic liquid crystal,” Acta Phys. Pol. A119, 824–828 (2011).
  32. F. J. Kahn, “Electric-field-induced orientational deformation of nematic liquid-crystals - tunable birefringence,” Appl. Phys. Lett.20(5), 199–201 (1972).
    [CrossRef]
  33. C. F. Hsieh, H. L. Chen, C. Y. Chen, R. P. Pan, and C. L. Pan, “Voltage controlled liquid crystal terahertz quarter wave plate,” 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 983–984 (2005).
  34. Y. Y. Luk and N. L. Abbott, “Surface-driven switching of liquid crystals using redox-active groups on electrodes,” Science301(5633), 623–626 (2003).
    [CrossRef] [PubMed]
  35. L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express2(10), 1314–1319 (2012).
    [CrossRef]

2012 (8)

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
[CrossRef]

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
[CrossRef] [PubMed]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express2(10), 1314–1319 (2012).
[CrossRef]

2011 (6)

J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van der Zande, R. A. Barton, P. L. McEuen, E. D. Minot, and Y. S. Lee, “Terahertz imaging and spectroscopy of large-area single-layer graphene,” Opt. Express19(1), 141–146 (2011).
[CrossRef] [PubMed]

S. P. Yadav, K. K. Pandey, A. K. Misra, and R. Manohar, “Electro-optical behavior of dye doped nematic liquid crystal,” Acta Phys. Pol. A119, 824–828 (2011).

N. Palka, “THz reflection spectroscopy of explosives measured by time domain spectroscopy,” Acta Phys. Pol. A120, 713–715 (2011).

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

2010 (3)

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

2009 (1)

A. K. Geim, “Graphene: status and prospects,” Science324(5934), 1530–1534 (2009).
[CrossRef] [PubMed]

2008 (3)

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

2007 (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

2006 (3)

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31(8), 1112–1114 (2006).
[CrossRef] [PubMed]

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253(2), 409–411 (2006).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

2003 (2)

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett.83(22), 4497–4499 (2003).
[CrossRef]

Y. Y. Luk and N. L. Abbott, “Surface-driven switching of liquid crystals using redox-active groups on electrodes,” Science301(5633), 623–626 (2003).
[CrossRef] [PubMed]

2002 (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50(3), 910–928 (2002).
[CrossRef]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

2000 (1)

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

1976 (1)

S. Chandrasekhar, “Liquid-Crystals,” Rep. Prog. Phys.39(7), 613–692 (1976).
[CrossRef]

1972 (1)

F. J. Kahn, “Electric-field-induced orientational deformation of nematic liquid-crystals - tunable birefringence,” Appl. Phys. Lett.20(5), 199–201 (1972).
[CrossRef]

Abbott, N. L.

Y. Y. Luk and N. L. Abbott, “Surface-driven switching of liquid crystals using redox-active groups on electrodes,” Science301(5633), 623–626 (2003).
[CrossRef] [PubMed]

Ahn, J. H.

J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
[CrossRef] [PubMed]

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Ajayan, P.

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

Avouris, P.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Barbolina, I. I.

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Barton, R. A.

Bechtel, H. A.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Bhatia, C. S.

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Booth, T. J.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Brimicombe, P. D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Chae, S. J.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

Chandra, B.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Chandrasekhar, S.

S. Chandrasekhar, “Liquid-Crystals,” Rep. Prog. Phys.39(7), 613–692 (1976).
[CrossRef]

Chang, C. H.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

Chen, C. W.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

Chen, C. Y.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett.83(22), 4497–4499 (2003).
[CrossRef]

C. F. Hsieh, H. L. Chen, C. Y. Chen, R. P. Pan, and C. L. Pan, “Voltage controlled liquid crystal terahertz quarter wave plate,” 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 983–984 (2005).

Chen, H. L.

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31(8), 1112–1114 (2006).
[CrossRef] [PubMed]

C. F. Hsieh, H. L. Chen, C. Y. Chen, R. P. Pan, and C. L. Pan, “Voltage controlled liquid crystal terahertz quarter wave plate,” 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 983–984 (2005).

Chen, L. W.

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

Chen, Y. F.

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Choi, H.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Coutaz, J. L.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
[CrossRef]

Dadrasnia, E.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Elias, D. C.

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Fang, T.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Freitag, M.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Garet, F.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
[CrossRef]

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science324(5934), 1530–1534 (2009).
[CrossRef] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Geng, B. S.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

George, J.

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

Giesbers, J.

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Girit, C.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Gleeson, H. F.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Hao, X.

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Hao, Z.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Hill, E. W.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Horng, J.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Hsieh, C. F.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31(8), 1112–1114 (2006).
[CrossRef] [PubMed]

C. F. Hsieh, H. L. Chen, C. Y. Chen, R. P. Pan, and C. L. Pan, “Voltage controlled liquid crystal terahertz quarter wave plate,” 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 983–984 (2005).

Hu, W.

Huang, R.

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Hwang, W. S.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Jameson, A. D.

Jena, D.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Jiang, D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Jin, B. B.

Ju, L.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Kahn, F. J.

F. J. Kahn, “Electric-field-induced orientational deformation of nematic liquid-crystals - tunable birefringence,” Appl. Phys. Lett.20(5), 199–201 (1972).
[CrossRef]

Kalon, G.

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Kelly, M. M.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Kevek, J. W.

Kim, D. H.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253(2), 409–411 (2006).
[CrossRef]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Kim, Y. J.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kuppam, M. B.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
[CrossRef]

Kwon, J. H.

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Lamela, H.

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
[CrossRef]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, G. H.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253(2), 409–411 (2006).
[CrossRef]

Lee, H. J.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253(2), 409–411 (2006).
[CrossRef]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Lee, Y.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Lee, Y. H.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

Lee, Y. S.

Lei, T.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Li, P. J.

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Li, X. S.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Li, Y. R.

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Liang, G. C.

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Liang, M.

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

Liang, X.

Liang, X. G.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Lim, S.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

Lin, X. W.

Lin, Y. C.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

Liu, J. B.

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Liu, L.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Lu, Y. Q.

Luk, Y. Y.

Y. Y. Luk and N. L. Abbott, “Surface-driven switching of liquid crystals using redox-active groups on electrodes,” Science301(5633), 623–626 (2003).
[CrossRef] [PubMed]

Maeng, I.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

Manohar, R.

S. P. Yadav, K. K. Pandey, A. K. Misra, and R. Manohar, “Electro-optical behavior of dye doped nematic liquid crystal,” Acta Phys. Pol. A119, 824–828 (2011).

Martin, M.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

McEuen, P. L.

Menon, C. S.

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Minot, E. D.

Misra, A. K.

S. P. Yadav, K. K. Pandey, A. K. Misra, and R. Manohar, “Electro-optical behavior of dye doped nematic liquid crystal,” Acta Phys. Pol. A119, 824–828 (2011).

Mohinddin, T. M. G.

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Morozov, S. V.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Niu, J.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
[CrossRef] [PubMed]

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Palka, N.

N. Palka, “THz reflection spectroscopy of explosives measured by time domain spectroscopy,” Acta Phys. Pol. A120, 713–715 (2011).

Pan, C. L.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31(8), 1112–1114 (2006).
[CrossRef] [PubMed]

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett.83(22), 4497–4499 (2003).
[CrossRef]

C. F. Hsieh, H. L. Chen, C. Y. Chen, R. P. Pan, and C. L. Pan, “Voltage controlled liquid crystal terahertz quarter wave plate,” 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 983–984 (2005).

Pan, R. P.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31(8), 1112–1114 (2006).
[CrossRef] [PubMed]

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett.83(22), 4497–4499 (2003).
[CrossRef]

C. F. Hsieh, H. L. Chen, C. Y. Chen, R. P. Pan, and C. L. Pan, “Voltage controlled liquid crystal terahertz quarter wave plate,” 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 983–984 (2005).

Pandey, K. K.

S. P. Yadav, K. K. Pandey, A. K. Misra, and R. Manohar, “Electro-optical behavior of dye doped nematic liquid crystal,” Acta Phys. Pol. A119, 824–828 (2011).

Park, J. S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Park, M. R.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253(2), 409–411 (2006).
[CrossRef]

Paul, M. J.

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Ponomarenko, L. A.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Qin, Y. Q.

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Schedin, F.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Shen, Y. R.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Shieh, J. M.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

Shin, Y. J.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
[CrossRef] [PubMed]

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50(3), 910–928 (2002).
[CrossRef]

Son, J.

J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
[CrossRef] [PubMed]

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Son, J. H.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

Song, L.

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Tang, T. T.

Tomaino, J. L.

Tsai, T. R.

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett.83(22), 4497–4499 (2003).
[CrossRef]

Tulevski, G.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

van der Zande, A. M.

Wang, F.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Wang, L.

Wang, Z. G.

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Wu, J. B.

Wu, Y. Q.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Wu, Z. R.

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

Xia, F. N.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Xin, H.

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

Xing, H. G.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Xu, X. F.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Yadav, S. P.

S. P. Yadav, K. K. Pandey, A. K. Misra, and R. Manohar, “Electro-optical behavior of dye doped nematic liquid crystal,” Acta Phys. Pol. A119, 824–828 (2011).

Yan, H. G.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Yan, R. S.

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Yang, H.

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, Y. J. Shin, J. Son, Y. Lee, J. H. Ahn, and H. Yang, “Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles,” Opt. Express20(18), 19690–19696 (2012).
[CrossRef] [PubMed]

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Yang, R.

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Yu, P. C.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

Zettl, A.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Zhang, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Zheng, Z. G.

Zhu, W. J.

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

ACS Nano (1)

Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011).
[CrossRef] [PubMed]

Acta Phys. Pol. A (2)

N. Palka, “THz reflection spectroscopy of explosives measured by time domain spectroscopy,” Acta Phys. Pol. A120, 713–715 (2011).

S. P. Yadav, K. K. Pandey, A. K. Misra, and R. Manohar, “Electro-optical behavior of dye doped nematic liquid crystal,” Acta Phys. Pol. A119, 824–828 (2011).

Appl. Phys. Lett. (4)

F. J. Kahn, “Electric-field-induced orientational deformation of nematic liquid-crystals - tunable birefringence,” Appl. Phys. Lett.20(5), 199–201 (1972).
[CrossRef]

J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett.83(22), 4497–4499 (2003).
[CrossRef]

Y. J. Shin, G. Kalon, J. Son, J. H. Kwon, J. Niu, C. S. Bhatia, G. C. Liang, and H. Yang, “Tunneling characteristics of graphene,” Appl. Phys. Lett.97(25), 252102 (2010).
[CrossRef]

Appl. Surf. Sci. (1)

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253(2), 409–411 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50(3), 910–928 (2002).
[CrossRef]

M. Liang, Z. R. Wu, L. W. Chen, L. Song, P. Ajayan, and H. Xin, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Trans. Microw. Theory Tech.59(10), 2719–2725 (2011).
[CrossRef]

J. Appl. Phys. (1)

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

Nano Lett. (2)

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

B. Sensale-Rodriguez, R. S. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Nat. Mater. (3)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012).
[CrossRef] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (3)

H. G. Yan, X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” Phys. Status Solidi B244(11), 4106–4111 (2007).
[CrossRef]

Proc. SPIE (1)

E. Dadrasnia, H. Lamela, M. B. Kuppam, F. Garet, and J. L. Coutaz, “THz time-domain spectroscopy in different carbon nanotube thin-films,” Proc. SPIE8261, 82610Y, 82610Y-5 (2012).
[CrossRef]

Rep. Prog. Phys. (1)

S. Chandrasekhar, “Liquid-Crystals,” Rep. Prog. Phys.39(7), 613–692 (1976).
[CrossRef]

Science (4)

A. K. Geim, “Graphene: status and prospects,” Science324(5934), 1530–1534 (2009).
[CrossRef] [PubMed]

Y. Y. Luk and N. L. Abbott, “Surface-driven switching of liquid crystals using redox-active groups on electrodes,” Science301(5633), 623–626 (2003).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Surf. Coat. Tech. (1)

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

Other (1)

C. F. Hsieh, H. L. Chen, C. Y. Chen, R. P. Pan, and C. L. Pan, “Voltage controlled liquid crystal terahertz quarter wave plate,” 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 983–984 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A Raman spectrum of single layer graphene. The inset of (a) is a current versus gate bias curve. (b) Transmittance of CVD graphene at visible and near infrared wavelengths.

Fig. 2
Fig. 2

(a) A schematic diagram of the graphene-based liquid crystal phase shifter at terahertz frequencies. The device consists of (1) glass substrates, (2) single layer CVD graphene films, (3) alignment layer (polyimide), (4) spacers (thickness 50 µm), (5) liquid crystal cell (5CB) (thickness 50 µm), and (6) Cr/Au electrodes (thickness 40 nm). (b) Before applying voltage, liquid crystals are aligned parallel to the film plane due to the polyimide layer. (c) With the bias voltage, liquid crystals are aligned perpendicular to the film plane. “E” denotes the electrical field direction of the THz pulses. The pulse transmission direction is perpendicular to the substrates.

Fig. 3
Fig. 3

(a) The THz pulse intensity through the sample holder, the bare glass substrate, single layer, bi-layer, tri-layer, and 4-layer graphene films. The each data set is shifted in time. (b) The transmittance of single layer, bi-layer, tri-layer, and 4-layer graphene films at THz frequencies. (c) The absorption rate of each additional stacked layer of graphene film. (d) Sheet resistance of CVD graphene films versus the number of stacked graphene layers.

Fig. 4
Fig. 4

(a) THz pulse signal transmitted through the phase shifter with different bias voltages. The inset shows the waveform of the THz signal in the full scanning range. Single layer graphene is used. (b) Voltage controlled phase shifts at different frequencies.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

v th =π L d k11 εaε0
δ( v )= 2πfd c Δneff( v )
Δneff( v )=( neno ) no ne [ ( 1+ no ne )( vvth vth ) ]
Δneff( v )=( neno ) no ne [ 1 2 v k11 εaε0 ]

Metrics