Abstract

Developing of highly absorbing thin films is essential for exploration of light-matter interaction and polariton-based applications. We demonstrate here layer-by-layer assembled J-aggregate thin films of (DEDOC) cyanine dyes that have high absorption coefficient and controlled thicknesses, leading to adjustable exciton-photon coupling and Rabi splitting exceeding 400 meV at room temperature in all-metal mirror microcavities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
    [CrossRef] [PubMed]
  2. S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
    [CrossRef] [PubMed]
  3. S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
    [CrossRef]
  4. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
    [CrossRef] [PubMed]
  5. D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
    [CrossRef] [PubMed]
  6. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
    [CrossRef]
  7. R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron.8(2-3), 77–93 (2007).
    [CrossRef]
  8. T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
    [CrossRef]
  9. R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule,” Phys. Rev. Lett.93(18), 186404 (2004).
    [CrossRef] [PubMed]
  10. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101(11), 116401 (2008).
    [CrossRef] [PubMed]
  11. S. Kéna-Cohen and S. R. Forrest, “Green polariton photoluminescence using the red-emitting phosphor PtOEP,” Phys. Rev. B76(7), 075202 (2007).
    [CrossRef]
  12. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
    [CrossRef]
  13. D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
    [CrossRef]
  14. N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
    [CrossRef]
  15. S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B86(4), 045408 (2012).
    [CrossRef]
  16. M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater.17(15), 1881–1886 (2005).
    [CrossRef]
  17. J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
    [CrossRef] [PubMed]
  18. G. H. Lodden and R. J. Holmes, “Thermally activated population of microcavity polariton states under optical and electrical excitation,” Phys. Rev. B83(7), 075301 (2011).
    [CrossRef]
  19. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
    [CrossRef] [PubMed]
  20. T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011).
    [CrossRef] [PubMed]
  21. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
    [CrossRef] [PubMed]
  22. A. Salomon, C. Genet, and T. W. Ebbesen, “Molecule-light complex: dynamics of hybrid molecule-surface plasmon states,” Angew. Chem. Int. Ed. Engl.48(46), 8748–8751 (2009).
    [CrossRef] [PubMed]
  23. Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011).
    [CrossRef]
  24. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
    [CrossRef]
  25. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
    [CrossRef]
  26. R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B70(19), 195432 (2004).
    [CrossRef]
  27. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
    [CrossRef]
  28. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997)
  29. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13(7), 645–669 (1998).
    [CrossRef]
  30. V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995).
    [CrossRef]
  31. K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater.22(5), 572–582 (2010).
    [CrossRef] [PubMed]

2012

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B86(4), 045408 (2012).
[CrossRef]

2011

G. H. Lodden and R. J. Holmes, “Thermally activated population of microcavity polariton states under optical and electrical excitation,” Phys. Rev. B83(7), 075301 (2011).
[CrossRef]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011).
[CrossRef] [PubMed]

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011).
[CrossRef]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

2010

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater.22(5), 572–582 (2010).
[CrossRef] [PubMed]

S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

2009

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

A. Salomon, C. Genet, and T. W. Ebbesen, “Molecule-light complex: dynamics of hybrid molecule-surface plasmon states,” Angew. Chem. Int. Ed. Engl.48(46), 8748–8751 (2009).
[CrossRef] [PubMed]

2008

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101(11), 116401 (2008).
[CrossRef] [PubMed]

2007

S. Kéna-Cohen and S. R. Forrest, “Green polariton photoluminescence using the red-emitting phosphor PtOEP,” Phys. Rev. B76(7), 075202 (2007).
[CrossRef]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron.8(2-3), 77–93 (2007).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

2005

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

2004

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B70(19), 195432 (2004).
[CrossRef]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule,” Phys. Rev. Lett.93(18), 186404 (2004).
[CrossRef] [PubMed]

2002

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

2000

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

1999

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

1998

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13(7), 645–669 (1998).
[CrossRef]

1995

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995).
[CrossRef]

1992

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Adawi, A. M.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Agranovich, V. M.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

Andreani, L. C.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Armitage, A.

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

Baumberg, J. J.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Bhattacharya, P.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Bradley, M. S.

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
[CrossRef] [PubMed]

Bryce, M. R.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater.22(5), 572–582 (2010).
[CrossRef] [PubMed]

Bulovic, V.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
[CrossRef] [PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Butté, R.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Carlin, J. F.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Cerullo, G.

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

Christmann, G.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Clark, C.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Coles, D.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

Coles, D. M.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Das, A.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Davanço, M.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101(11), 116401 (2008).
[CrossRef] [PubMed]

Deng, H.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Ebbesen, T. W.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011).
[CrossRef] [PubMed]

A. Salomon, C. Genet, and T. W. Ebbesen, “Molecule-light complex: dynamics of hybrid molecule-surface plasmon states,” Angew. Chem. Int. Ed. Engl.48(46), 8748–8751 (2009).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Feltin, E.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Fisher, T. A.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13(7), 645–669 (1998).
[CrossRef]

Forrest, S.

S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

Forrest, S. R.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101(11), 116401 (2008).
[CrossRef] [PubMed]

S. Kéna-Cohen and S. R. Forrest, “Green polariton photoluminescence using the red-emitting phosphor PtOEP,” Phys. Rev. B76(7), 075202 (2007).
[CrossRef]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron.8(2-3), 77–93 (2007).
[CrossRef]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule,” Phys. Rev. Lett.93(18), 186404 (2004).
[CrossRef] [PubMed]

Fox, A. M.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

Fritz, T.

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B70(19), 195432 (2004).
[CrossRef]

Fujii, M.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B86(4), 045408 (2012).
[CrossRef]

Gehring, G. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

Genet, C.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011).
[CrossRef] [PubMed]

A. Salomon, C. Genet, and T. W. Ebbesen, “Molecule-light complex: dynamics of hybrid molecule-surface plasmon states,” Angew. Chem. Int. Ed. Engl.48(46), 8748–8751 (2009).
[CrossRef] [PubMed]

Grandjean, N.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Grundy, A. J. D.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Guo, W.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Hakala, T. K.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

Hayashi, S.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B86(4), 045408 (2012).
[CrossRef]

Heo, J.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Hobson, P. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

Holmes, R. J.

G. H. Lodden and R. J. Holmes, “Thermally activated population of microcavity polariton states under optical and electrical excitation,” Phys. Rev. B83(7), 075301 (2011).
[CrossRef]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron.8(2-3), 77–93 (2007).
[CrossRef]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule,” Phys. Rev. Lett.93(18), 186404 (2004).
[CrossRef] [PubMed]

Hutchison, J. A.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011).
[CrossRef] [PubMed]

Ishigaki, Y.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B86(4), 045408 (2012).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Jankowski, M.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Kamtekar, K. T.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater.22(5), 572–582 (2010).
[CrossRef] [PubMed]

Kavokin, A. V.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Kéna-Cohen, S.

S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101(11), 116401 (2008).
[CrossRef] [PubMed]

S. Kéna-Cohen and S. R. Forrest, “Green polariton photoluminescence using the red-emitting phosphor PtOEP,” Phys. Rev. B76(7), 075202 (2007).
[CrossRef]

Kim, J. S.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

Lagoudakis, P. G.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Lanzani, G.

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

Lidzey, D. G.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Lodden, G. H.

G. H. Lodden and R. J. Holmes, “Thermally activated population of microcavity polariton states under optical and electrical excitation,” Phys. Rev. B83(7), 075301 (2011).
[CrossRef]

Lüer, L.

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

Meijer, A. J. H. M.

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

Michetti, P.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Monkman, A. P.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater.22(5), 572–582 (2010).
[CrossRef] [PubMed]

Mouchliadis, L.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Nitsche, R.

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B70(19), 195432 (2004).
[CrossRef]

Nurmikko, A.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
[CrossRef] [PubMed]

Obara, Y.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011).
[CrossRef]

Oda, M.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011).
[CrossRef]

Perakis, I. E.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

Quattropani, A.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995).
[CrossRef]

Rahn, M. D.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

Roberts, J. S.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Saitoh, K.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011).
[CrossRef]

Salomon, A.

A. Salomon, C. Genet, and T. W. Ebbesen, “Molecule-light complex: dynamics of hybrid molecule-surface plasmon states,” Angew. Chem. Int. Ed. Engl.48(46), 8748–8751 (2009).
[CrossRef] [PubMed]

Savona, V.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995).
[CrossRef]

Savvidis, P. G.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Schwartz, T.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011).
[CrossRef] [PubMed]

Schwendimann, P.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995).
[CrossRef]

Skolnick, M. S.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13(7), 645–669 (1998).
[CrossRef]

Somaschi, N.

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

Song, J. H.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
[CrossRef] [PubMed]

Stagira, S.

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

Stevenson, R. M.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Tani, T.

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011).
[CrossRef]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

Tischler, J. R.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
[CrossRef] [PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

Toppari, J. J.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

Törmä, P.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

Tsoi, W. C.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Virgili, T.

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

von Högersthal, G. B.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Walker, S.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Whittaker, D. M.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13(7), 645–669 (1998).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Zhang, L.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Adv. Mater.

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater.22(5), 572–582 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

A. Salomon, C. Genet, and T. W. Ebbesen, “Molecule-light complex: dynamics of hybrid molecule-surface plasmon states,” Angew. Chem. Int. Ed. Engl.48(46), 8748–8751 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett.81(19), 3519 (2002).
[CrossRef]

N. Somaschi, L. Mouchliadis, D. Coles, I. E. Perakis, D. G. Lidzey, P. G. Lagoudakis, and P. G. Savvidis, “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities,” Appl. Phys. Lett.99(14), 143303 (2011).
[CrossRef]

Nat. Photonics

S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

Nature

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Org. Electron.

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling in organic materials,” Org. Electron.8(2-3), 77–93 (2007).
[CrossRef]

Phys. Rev. B

T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B81(12), 125317 (2010).
[CrossRef]

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B86(4), 045408 (2012).
[CrossRef]

S. Kéna-Cohen and S. R. Forrest, “Green polariton photoluminescence using the red-emitting phosphor PtOEP,” Phys. Rev. B76(7), 075202 (2007).
[CrossRef]

G. H. Lodden and R. J. Holmes, “Thermally activated population of microcavity polariton states under optical and electrical excitation,” Phys. Rev. B83(7), 075301 (2011).
[CrossRef]

R. Nitsche and T. Fritz, “Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: application to organic semiconductors,” Phys. Rev. B70(19), 195432 (2004).
[CrossRef]

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B65(19), 195312 (2002).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plamon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Phys. Rev. Lett.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett.95(3), 036401 (2005).
[CrossRef] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett.84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106(19), 196405 (2011).
[CrossRef] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett.103(5), 053602 (2009).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82(16), 3316–3319 (1999).
[CrossRef]

R. J. Holmes and S. R. Forrest, “Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule,” Phys. Rev. Lett.93(18), 186404 (2004).
[CrossRef] [PubMed]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101(11), 116401 (2008).
[CrossRef] [PubMed]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi

Y. Obara, K. Saitoh, M. Oda, and T. Tani, “Anomalous reflection properties in high density limit fibril shaped PIC-J aggregates in microcavity structure,” Phys. Status Solidi8(2c), 595–597 (2011).
[CrossRef]

Science

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13(7), 645–669 (1998).
[CrossRef]

Solid State Commun.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun.93(9), 733–739 (1995).
[CrossRef]

Other

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Chemical structure of DEDOC dye molecule. (b) Absorption spectra of DEDOC dye monomers dispersed in NaOH solution (dotted line) and a LBL-assembled P(DP)1 film with DEDOC J-aggregates (solid line). (c) Absorption spectra of PDAC/DEDOC J-aggregate films with various adsorption cycles, N.

Fig. 2
Fig. 2

(a) Tapping-mode atomic force microscopy (AFM) images of the PDAC/DEDOC J-aggregate films with various adsorption cycles. The image size is 5 μm × 5 μm. (b) The estimated thickness and roughness of the PDAC/DEDOC J-aggregate films as a function of adsorption cycles from the AFM measurements. The inset is the AFM image of the first DEDOC layer adsorbed on a PDAC layer (N = 0.5). The image size is 2 μm × 2 μm.

Fig. 3
Fig. 3

(a) (n,k) spectra of a DEDOC J-aggregate layer, obtained from the KK regression in an iterative algorithm to reach an optimized fitting of the transmittance spectrum of a P(DP)1 J-aggregate film, as the result shown in (b). Fitting of the reflectance spectrum was also performed for reference. The inset in (b) is the fitting of R and T spectra of a P(DP)5 J-aggregate film using (n,k) spectra in (a).

Fig. 4
Fig. 4

Schematic diagram of the microcavity structure consisting of a 150 nm thick Ag as the bottom mirror, 60 nm thick SiO2 as spacer layers, a PDAC/DEDOC J-aggregate film, and a 20 nm thick Ag as the top mirror. The electric field superimposed on the cavity was calculated by finite-difference time-domain method with spatial resolution of 1 nm for the wavelength of 550 nm.

Fig. 5
Fig. 5

(a)-(c) Angle-resolved reflectivity spectra for microcavities containing P(DP)1, P(DP)4, and P(DP)5 J-aggregate films and 60 nm SiO2 spacers. (d)-(f) LP/UP dispersions (solid circles) extracted from the reflectivity spectra in (a)-(c). The black lines are fit to the polariton dispersions using a two-mode coupled oscillator model. The gray lines indicate the dispersions of the uncoupled photon and exciton modes deduced from the fit to the polariton dispersions. In (f) the experimental LP/UP dispersions of P(DP)5 device (black open circles) were simulated with the J-band-only model (green solid circles) using the k spectrum denoted as “J” in (g), and the model including both J-band and a Guassian sideband absorption (red cross) using the k spectrum denoted as “J+sideband” in (g). As shown in (c) and (f), the “J+sideband” model agrees well with the angular evolution of UP reflectivity spectra and experimental LP/UP dispersions. However, the J-band-only model can recover the UP energy of J-band in the sideband region (2.5~2.7 eV). The arrow in (f) indicates the Rabi splitting between LP and UP dispersions of the J-band.

Fig. 6
Fig. 6

The LP/UP dispersions of a microcavity containing a P(DP)4 J-aggregate film and 70 nm SiO2 spacers. The black lines are fit to the polariton dispersions using a two-mode coupled oscillator model. The gray lines indicate the dispersions of the uncoupled photon and exciton modes deduced from the fit to the polariton dispersions. The arrow indicates the Rabi splitting of 400 meV between LP and UP dispersions at 62°.

Tables (1)

Tables Icon

Table 1 Fitting parameters for the UP/LP dispersions in Fig. 5 and 6. Ωscaled is the scaled Rabi-splitting energy with respect to the P(DP)1 sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ph ( θ )= E ph ( 0 ) [ 1 ( sinθ/ n eff ) 2 ] 1/2 ,
E UP,LP ( θ )= E ph ( θ )+ E ex 2 ± 1 2 ( E ph ( θ ) E ex ) 2 +4 V 2 ,

Metrics