Abstract

The optical Kerr effect exhibited by a nickel doped zinc oxide thin solid film was explored with femto- and pico-second pulses using the z-scan method. The samples were prepared by the ultrasonic spray pyrolysis technique. Opposite signs for the value of the nonlinear refractive index were observed in the two experiments. Self-defocusing together with a two-photon absorption process was observed with 120 ps pulses at 1064 nm, while a dominantly self-focusing effect accompanied by saturated absorption was found for 80 fs pulses at 825 nm. Regarding the nanostructured morphology of the resulting film, we attribute the difference in the two ultrafast optical responses to the different physical mechanism responsible of energy transfer generated by multiphoton processes under electronic and thermal effects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rigneault, J. M. Lourtioz, C. Delalande, and A. Levenson, Nanophotonics (ISTE Ltd, 2006).
  2. T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, “Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets,” Opt. Express20(4), 4537–4547 (2012).
    [CrossRef] [PubMed]
  3. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
    [CrossRef]
  4. E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
    [CrossRef]
  5. Y. Mai and A. Watanabe, “Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first principle pseudopotential method,” J. Mater. Sci. Mater. Electron.15(11), 743–749 (2004).
  6. B. Claflin, D. C. Look, and D. R. Norton, “Changes in electrical characteristics of ZnO thin films due to environmental factors,” J. Electron. Mater.36(4), 442–445 (2007).
    [CrossRef]
  7. J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010).
    [CrossRef] [PubMed]
  8. S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
    [CrossRef] [PubMed]
  9. Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
    [CrossRef] [PubMed]
  10. X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004).
    [CrossRef]
  11. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
    [CrossRef]
  12. A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
    [CrossRef]
  13. P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007).
    [CrossRef] [PubMed]
  14. V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
    [CrossRef]
  15. L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012).
    [CrossRef]
  16. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
    [CrossRef]
  17. R. Schmidt-Grund, N. Ashkenov, M. M. Schubert, W. Czakai, D. Faltermeier, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Temperature-dependence of the refractive index and the optical transitions at the fundamental band-gap of ZnO,” Phys. of Semicond. 28th Int. Conf. 271–272 (2007).
    [CrossRef]
  18. M. Falconieri, “Thermo-optical effects in Z -scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt.1(6), 662–667 (1999).
    [CrossRef]
  19. D. Cotter, M. G. Burt, and R. J. Manning, “Below-Band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett.68(8), 1200–1203 (1992).
    [CrossRef] [PubMed]
  20. P. Pushparajah, A. K. Arof, and S. Radhakrishna, “Physical properties of spray pyrolysed pure and doped ZnO thin films,” J. Phys. D Appl. Phys.27(7), 1518–1521 (1994).
    [CrossRef]
  21. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).
  22. A. Persoons, “Nonlinear optics, chirality, magneto-optics:a serendipitous road,” Opt. Mater. Express1(1), 5–16 (2011).
    [CrossRef]
  23. Y. P. Chan, J. H. Lin, C. C. Hsu, and W. F. Hsieh, “Near-resonant high order nonlinear absorption of ZnO thin films,” Opt. Express16(24), 19900–19908 (2008).
    [CrossRef] [PubMed]
  24. J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express17(15), 12849–12868 (2009).
    [CrossRef] [PubMed]

2012

T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, “Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets,” Opt. Express20(4), 4537–4547 (2012).
[CrossRef] [PubMed]

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012).
[CrossRef]

2011

2010

V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
[CrossRef]

J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010).
[CrossRef] [PubMed]

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

2009

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express17(15), 12849–12868 (2009).
[CrossRef] [PubMed]

2008

Y. P. Chan, J. H. Lin, C. C. Hsu, and W. F. Hsieh, “Near-resonant high order nonlinear absorption of ZnO thin films,” Opt. Express16(24), 19900–19908 (2008).
[CrossRef] [PubMed]

L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).

2007

B. Claflin, D. C. Look, and D. R. Norton, “Changes in electrical characteristics of ZnO thin films due to environmental factors,” J. Electron. Mater.36(4), 442–445 (2007).
[CrossRef]

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
[CrossRef]

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007).
[CrossRef] [PubMed]

2005

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

2004

Y. Mai and A. Watanabe, “Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first principle pseudopotential method,” J. Mater. Sci. Mater. Electron.15(11), 743–749 (2004).

X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004).
[CrossRef]

1999

M. Falconieri, “Thermo-optical effects in Z -scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt.1(6), 662–667 (1999).
[CrossRef]

1994

P. Pushparajah, A. K. Arof, and S. Radhakrishna, “Physical properties of spray pyrolysed pure and doped ZnO thin films,” J. Phys. D Appl. Phys.27(7), 1518–1521 (1994).
[CrossRef]

1992

D. Cotter, M. G. Burt, and R. J. Manning, “Below-Band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett.68(8), 1200–1203 (1992).
[CrossRef] [PubMed]

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Alivov, Y. I.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Arof, A. K.

P. Pushparajah, A. K. Arof, and S. Radhakrishna, “Physical properties of spray pyrolysed pure and doped ZnO thin films,” J. Phys. D Appl. Phys.27(7), 1518–1521 (1994).
[CrossRef]

Avrutin, V.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Barquinha, P.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Battaglin, G.

Bermel, P.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007).
[CrossRef] [PubMed]

Burt, M. G.

D. Cotter, M. G. Burt, and R. J. Manning, “Below-Band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett.68(8), 1200–1203 (1992).
[CrossRef] [PubMed]

Buyanova, I. A.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Calvelli, P.

Castañeda, L.

L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012).
[CrossRef]

Cesca, T.

Chan, Y. P.

Cheang-Wong, J. C.

Chen, S. L.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Chen, W. M.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Cho, S.-J.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Claflin, B.

B. Claflin, D. C. Look, and D. R. Norton, “Changes in electrical characteristics of ZnO thin films due to environmental factors,” J. Electron. Mater.36(4), 442–445 (2007).
[CrossRef]

Cotter, D.

D. Cotter, M. G. Burt, and R. J. Manning, “Below-Band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett.68(8), 1200–1203 (1992).
[CrossRef] [PubMed]

Crespo-Sosa, A.

Debrus, S.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
[CrossRef]

Deepthy, A.

L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).

Devika, M.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Dogan, S.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Falconieri, M.

M. Falconieri, “Thermo-optical effects in Z -scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt.1(6), 662–667 (1999).
[CrossRef]

Ferreira, I.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Filippov, S.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Fortunato, E.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Fujita, Y.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
[CrossRef]

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Gonçalves, A.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Gonçalves, G.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Hsieh, W. F.

Hsu, C. C.

Hu, Z.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Irimpan, L.

L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).

Joannopoulos, J. D.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007).
[CrossRef] [PubMed]

John, S.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Koteeswara Reddy, N.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Krishnan, B.

L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).

Kumar, O.

Li, J.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Lin, J.

Lin, J. H.

Liu, C.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Look, D. C.

B. Claflin, D. C. Look, and D. R. Norton, “Changes in electrical characteristics of ZnO thin films due to environmental factors,” J. Electron. Mater.36(4), 442–445 (2007).
[CrossRef]

López-Suárez, A.

Louka, P.

J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010).
[CrossRef] [PubMed]

Mai, Y.

Y. Mai and A. Watanabe, “Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first principle pseudopotential method,” J. Mater. Sci. Mater. Electron.15(11), 743–749 (2004).

Manning, R. J.

D. Cotter, M. G. Burt, and R. J. Manning, “Below-Band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett.68(8), 1200–1203 (1992).
[CrossRef] [PubMed]

Marpu, S.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Martinez, E.

J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010).
[CrossRef] [PubMed]

Martins, R.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Mattei, G.

Mazzoldi, P.

Morkoç, H.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Nampoori, V. P. N.

L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).

Neogi, A.

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
[CrossRef]

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Norton, D. R.

B. Claflin, D. C. Look, and D. R. Norton, “Changes in electrical characteristics of ZnO thin films due to environmental factors,” J. Electron. Mater.36(4), 442–445 (2007).
[CrossRef]

Oliver, A.

Omary, M.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

Özgür, Ü.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Pal, U.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
[CrossRef]

Palpant, B.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
[CrossRef]

Pereira, L.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Persoons, A.

Pimentel, A.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Pushparajah, P.

P. Pushparajah, A. K. Arof, and S. Radhakrishna, “Physical properties of spray pyrolysed pure and doped ZnO thin films,” J. Phys. D Appl. Phys.27(7), 1518–1521 (1994).
[CrossRef]

Radhakrishna, S.

P. Pushparajah, A. K. Arof, and S. Radhakrishna, “Physical properties of spray pyrolysed pure and doped ZnO thin films,” J. Phys. D Appl. Phys.27(7), 1518–1521 (1994).
[CrossRef]

Radhakrishnan, P.

L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).

Rangel-Rojo, R.

L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012).
[CrossRef]

Rasmussen, J. W.

J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010).
[CrossRef] [PubMed]

Ren, Q. J.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Reshchikov, M. A.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Reyes-Esqueda, J. A.

Rodriguez, A.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007).
[CrossRef] [PubMed]

Rodríguez-Fernández, L.

Rodríguez-Iglesias, V.

Ryasnyanskiy, A. I.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Santiago-Ramírez, A. L.

Senthilkumar, K.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Silva-Pereyra, H. G.

Soljacic, M.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007).
[CrossRef] [PubMed]

Stepanov, A. L.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
[CrossRef]

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Tamayo-Rivera, L.

L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012).
[CrossRef]

Teke, A.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Torres-Martínez, R.

L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012).
[CrossRef]

Torres-Torres, C.

Tu, C. W.

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Urban, B. E.

Wang, L. M.

X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004).
[CrossRef]

Watanabe, A.

Y. Mai and A. Watanabe, “Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first principle pseudopotential method,” J. Mater. Sci. Mater. Electron.15(11), 743–749 (2004).

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Wingett, D. G.

J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010).
[CrossRef] [PubMed]

Xiang, X.

X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004).
[CrossRef]

Yannopapas, V.

V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
[CrossRef]

Zhu, S.

X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004).
[CrossRef]

Zu, X. T.

X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004).
[CrossRef]

Appl. Phys. Lett.

X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, “Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals,” Appl. Phys. Lett.84(1), 52–54 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys., A Mater. Sci. Process.96(1), 197–205 (2009).
[CrossRef]

Expert Opin. Drug Deliv.

J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv.7(9), 1063–1077 (2010).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

J. Appl. Phys.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008).

J. Electron. Mater.

B. Claflin, D. C. Look, and D. R. Norton, “Changes in electrical characteristics of ZnO thin films due to environmental factors,” J. Electron. Mater.36(4), 442–445 (2007).
[CrossRef]

J. Mater. Sci. Mater. Electron.

Y. Mai and A. Watanabe, “Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first principle pseudopotential method,” J. Mater. Sci. Mater. Electron.15(11), 743–749 (2004).

J. Nanosci. Nanotechnol.

S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita, and A. Neogi, “Hybrid zinc oxide nanoparticles for biophotonics,” J. Nanosci. Nanotechnol.10(3), 1707–1712 (2010).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

M. Falconieri, “Thermo-optical effects in Z -scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt.1(6), 662–667 (1999).
[CrossRef]

J. Phys. D Appl. Phys.

P. Pushparajah, A. K. Arof, and S. Radhakrishna, “Physical properties of spray pyrolysed pure and doped ZnO thin films,” J. Phys. D Appl. Phys.27(7), 1518–1521 (1994).
[CrossRef]

Nanotechnology

Q. J. Ren, S. Filippov, S. L. Chen, M. Devika, N. Koteeswara Reddy, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires,” Nanotechnology23(42), 425201 (2012).
[CrossRef] [PubMed]

Opt. Commun.

V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
[CrossRef]

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun.273(2), 538–543 (2007).
[CrossRef]

Opt. Express

Opt. Mater. Express

Phys. Rev. Lett.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99(5), 053601 (2007).
[CrossRef] [PubMed]

D. Cotter, M. G. Burt, and R. J. Manning, “Below-Band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett.68(8), 1200–1203 (1992).
[CrossRef] [PubMed]

Phys. Scr.

L. Castañeda, C. Torres-Torres, R. Rangel-Rojo, L. Tamayo-Rivera, and R. Torres-Martínez, “Enhancement of the optical Kerr effect by photobleaching in nanostructured indium-doped zinc oxide thin films,” Phys. Scr.86(5), 055601 (2012).
[CrossRef]

Other

R. Schmidt-Grund, N. Ashkenov, M. M. Schubert, W. Czakai, D. Faltermeier, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Temperature-dependence of the refractive index and the optical transitions at the fundamental band-gap of ZnO,” Phys. of Semicond. 28th Int. Conf. 271–272 (2007).
[CrossRef]

H. Rigneault, J. M. Lourtioz, C. Delalande, and A. Levenson, Nanophotonics (ISTE Ltd, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Linear absorption spectrum.

Fig. 2
Fig. 2

Typical SEM micrograph for ZnO:Ni thin film.

Fig. 3
Fig. 3

Femtosecond closed aperture z-scan results at 825 nm. Marks represent experimental data and solid lines are numerical fits to the data using the theory described in the text.

Fig. 4
Fig. 4

Femtosecond open aperture z-scan results at 825 nm. Marks represent experimental data and solid lines are numerical fits to the data using the theory described in the text.

Fig. 5
Fig. 5

Picosecond closed aperture z-scan results at 1064 nm. Marks represent experimental data and solid lines are numerical fits to the data using the theory described in the text.

Fig. 6
Fig. 6

Picosecond open aperture z-scan results at 1064 nm. Marks represent experimental data and solid lines are numerical fits to the data using the theory described in the text.

Fig. 7
Fig. 7

Optical transmittance as function of a nanosecond incident irradiance at 1064 nm.

Tables (1)

Tables Icon

Table 1 Optical Kerr effect exhibited by the samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n o = n 2 I 2 ,
T( z,Δ Φ o )1 4Δ Φ o x ( x 2 +9 )( x 2 +1 ) ,
Δ Φ o =kΔ n o L eff ,
T( z,Δ Φ o )1 β I o L eff 2 2 ( x 2 +1 ) ,
I(L)= I o exp( α o L) 1+β I o L eff ,

Metrics