Abstract

Green photoluminescence (PL) from silicon microstructures fabricated by femtosecond laser in air was studied at different temperature by time-resolved spectroscopy. The PL decay profiles are well fitted by a stretched exponential function: I(t)=I(0)∗exp[−(t/τ)β]. The dependence of the decay time constant τ and of the stretching index β on PL photon energy and on the temperature is investigated. A model of transport and recombination of the carriers is introduced as a possible explanation of the stretched exponential decay. The nonradiative recombination rate of the localized carriers, which is dependent on the carrier density and influenced by the trapping site density and the temperature, is deduced to be responsible for this kind of decay.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafer,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
    [CrossRef]
  2. V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett.58(8), 856–858 (1991).
    [CrossRef]
  3. T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Appl. Phys. Lett.65(14), 1814–1816 (1994).
    [CrossRef]
  4. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
    [CrossRef] [PubMed]
  5. K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express18(24), 25241–25249 (2010).
    [CrossRef] [PubMed]
  6. X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993).
    [CrossRef]
  7. M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
    [CrossRef]
  8. T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
    [CrossRef]
  9. K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
    [CrossRef] [PubMed]
  10. D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
    [CrossRef]
  11. L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B Condens. Matter49(11), 7821–7824 (1994).
    [CrossRef] [PubMed]
  12. H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994).
    [CrossRef]
  13. G. Ledoux, J. Gong, and F. Huisken, “Effect of passivation and aging on the photoluminescence of silicon nanocrystals,” Appl. Phys. Lett.79(24), 4028–4030 (2001).
    [CrossRef]
  14. V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
    [CrossRef]
  15. C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002).
    [CrossRef]
  16. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
    [CrossRef]
  17. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
    [CrossRef]
  18. J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett.30(14), 1773–1775 (2005).
    [CrossRef] [PubMed]
  19. Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
    [CrossRef]
  20. Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, “Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy,” Opt. Express20(2), 960–965 (2012).
    [CrossRef] [PubMed]
  21. A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
    [CrossRef]
  22. Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
    [CrossRef]
  23. S. Manickam, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Study of silicon nanofibrous structure formed by femtosecond laser irradiation in air,” Opt. Express17(16), 13869–13874 (2009).
    [CrossRef] [PubMed]
  24. Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).
  25. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
    [CrossRef]
  26. J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008).
    [CrossRef] [PubMed]
  27. R. W. Collins, M. A. Paesler, and W. Paul, “The temperature dependence of photoluminescence in a-Si: H alloys,” Solid State Commun.34(10), 833–836 (1980).
    [CrossRef]
  28. R. Kohlrausch, “Nachtrag ueber die elastische Nachwirkung beim Cocon-und Glasfaden, und die hygroskopische Eigenschaft des ersteren,” Ann. Phys. (Leipzig)12, 393–399 (1847).
  29. B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett.91(17), 176602 (2003).
    [CrossRef] [PubMed]
  30. T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
    [CrossRef]
  31. M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
    [CrossRef]
  32. S. E. Paje and J. Llopis, “Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process.59(6), 569–574 (1994).
    [CrossRef]
  33. F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013).
    [CrossRef] [PubMed]

2013

F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013).
[CrossRef] [PubMed]

2012

Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, “Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy,” Opt. Express20(2), 960–965 (2012).
[CrossRef] [PubMed]

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

2011

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

2010

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express18(24), 25241–25249 (2010).
[CrossRef] [PubMed]

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

2009

2008

J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008).
[CrossRef] [PubMed]

2006

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

2005

2004

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
[CrossRef]

2003

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett.91(17), 176602 (2003).
[CrossRef] [PubMed]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

2002

C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002).
[CrossRef]

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

2001

G. Ledoux, J. Gong, and F. Huisken, “Effect of passivation and aging on the photoluminescence of silicon nanocrystals,” Appl. Phys. Lett.79(24), 4028–4030 (2001).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

2000

V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
[CrossRef]

1999

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

1998

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

1994

L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B Condens. Matter49(11), 7821–7824 (1994).
[CrossRef] [PubMed]

H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994).
[CrossRef]

T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Appl. Phys. Lett.65(14), 1814–1816 (1994).
[CrossRef]

S. E. Paje and J. Llopis, “Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process.59(6), 569–574 (1994).
[CrossRef]

1993

X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993).
[CrossRef]

1991

V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett.58(8), 856–858 (1991).
[CrossRef]

1990

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafer,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

1980

R. W. Collins, M. A. Paesler, and W. Paul, “The temperature dependence of photoluminescence in a-Si: H alloys,” Solid State Commun.34(10), 833–836 (1980).
[CrossRef]

1847

R. Kohlrausch, “Nachtrag ueber die elastische Nachwirkung beim Cocon-und Glasfaden, und die hygroskopische Eigenschaft des ersteren,” Ann. Phys. (Leipzig)12, 393–399 (1847).

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Atwater, H. A.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

Bakardjieva, S.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Balberg, I.

M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
[CrossRef]

Ballutaud, D.

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

Barbara, P. F.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Barcikowski, S.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Bartel, T.

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

Bimberg, D.

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

Bourianoff, G. I.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

Bruhn, B.

F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013).
[CrossRef] [PubMed]

Campbell, J. C.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafer,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

Cao, Y.

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Carey, J. E.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett.30(14), 1773–1775 (2005).
[CrossRef] [PubMed]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Chen, C.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Chen, J. Z.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Chen, X.

X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993).
[CrossRef]

Chen, Z.

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Chichkov, B. N.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Chizhik, A. I.

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

Chizhik, A. M.

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

Chu, L. Z.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Cibulka, O.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Cichos, F.

J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008).
[CrossRef] [PubMed]

Collins, R. W.

R. W. Collins, M. A. Paesler, and W. Paul, “The temperature dependence of photoluminescence in a-Si: H alloys,” Solid State Commun.34(10), 833–836 (1980).
[CrossRef]

Crouch, C. H.

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett.30(14), 1773–1775 (2005).
[CrossRef] [PubMed]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Deng, Z. C.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Ding, X. C.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Dohnalová, K.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express18(24), 25241–25249 (2010).
[CrossRef] [PubMed]

Dovrat, M.

M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
[CrossRef]

Dworzak, M.

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

Englich, J.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

English, D. S.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Etemadi, R.

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Fauchet, P. M.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B Condens. Matter49(11), 7821–7824 (1994).
[CrossRef] [PubMed]

Franzo, G.

V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
[CrossRef]

Friend, C. M.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

Fu, G. S.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Fucíková, A.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Gao, F.

Godet, C.

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

Gong, J.

G. Ledoux, J. Gong, and F. Huisken, “Effect of passivation and aging on the photoluminescence of silicon nanocrystals,” Appl. Phys. Lett.79(24), 4028–4030 (2001).
[CrossRef]

Gorkunov, M.

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett.91(17), 176602 (2003).
[CrossRef] [PubMed]

Gosele, U.

V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett.58(8), 856–858 (1991).
[CrossRef]

Goshen, Y.

M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
[CrossRef]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Guo, S.

Guo, X. Y.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

Han, Y.

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

Hoffmann, A.

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

Horrocks, B. R.

Huang, Z. H.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

Huisken, F.

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008).
[CrossRef] [PubMed]

G. Ledoux, J. Gong, and F. Huisken, “Effect of passivation and aging on the photoluminescence of silicon nanocrystals,” Appl. Phys. Lett.79(24), 4028–4030 (2001).
[CrossRef]

Iacona, F.

V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
[CrossRef]

Jedrzejewski, J.

M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
[CrossRef]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Kohlrausch, R.

R. Kohlrausch, “Nachtrag ueber die elastische Nachwirkung beim Cocon-und Glasfaden, und die hygroskopische Eigenschaft des ersteren,” Ann. Phys. (Leipzig)12, 393–399 (1847).

Korgel, B. A.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Kusová, K.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Lang, J.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Ledoux, G.

G. Ledoux, J. Gong, and F. Huisken, “Effect of passivation and aging on the photoluminescence of silicon nanocrystals,” Appl. Phys. Lett.79(24), 4028–4030 (2001).
[CrossRef]

Lehmann, V.

V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett.58(8), 856–858 (1991).
[CrossRef]

Levinson, J. A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Liang, W. H.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Linnros, J.

F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013).
[CrossRef] [PubMed]

Little, R.

Liu, M. G.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

Llopis, J.

S. E. Paje and J. Llopis, “Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process.59(6), 569–574 (1994).
[CrossRef]

Ma, Y.

Malý, P.

Manickam, S.

Martin, J.

J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008).
[CrossRef] [PubMed]

Matejka, P.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Mazhukin, V. I.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Mazur, E.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett.30(14), 1773–1775 (2005).
[CrossRef] [PubMed]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Meixner, A. J.

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

Menéndez-Manjón, A.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Nakao, S.

T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Appl. Phys. Lett.65(14), 1814–1816 (1994).
[CrossRef]

O’Donnell, K. P.

X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993).
[CrossRef]

Ondic, L.

Paesler, M. A.

R. W. Collins, M. A. Paesler, and W. Paul, “The temperature dependence of photoluminescence in a-Si: H alloys,” Solid State Commun.34(10), 833–836 (1980).
[CrossRef]

Paje, S. E.

S. E. Paje and J. Llopis, “Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process.59(6), 569–574 (1994).
[CrossRef]

Paul, W.

R. W. Collins, M. A. Paesler, and W. Paul, “The temperature dependence of photoluminescence in a-Si: H alloys,” Solid State Commun.34(10), 833–836 (1980).
[CrossRef]

Pelant, I.

K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express18(24), 25241–25249 (2010).
[CrossRef] [PubMed]

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Pell, L. E.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Podivilov, E.

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett.91(17), 176602 (2003).
[CrossRef] [PubMed]

Potrick, K.

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

Priolo, F.

V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
[CrossRef]

Ruckschloss, M.

H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994).
[CrossRef]

Rupp, R. A.

Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, “Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy,” Opt. Express20(2), 960–965 (2012).
[CrossRef] [PubMed]

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Sa’ar, A.

M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
[CrossRef]

Saitoh, K.

T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Appl. Phys. Lett.65(14), 1814–1816 (1994).
[CrossRef]

Sangghaleh, F.

F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013).
[CrossRef] [PubMed]

Schmidt, T.

F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013).
[CrossRef] [PubMed]

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

Shafeev, G. A.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Sheehy, M.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

Shen, M. Y.

J. E. Carey, C. H. Crouch, M. Y. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett.30(14), 1773–1775 (2005).
[CrossRef] [PubMed]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

Shimizu-lwayama, T.

T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Appl. Phys. Lett.65(14), 1814–1816 (1994).
[CrossRef]

Šiller, L.

Spinella, C.

V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
[CrossRef]

Stepánek, P.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Strassburg, M.

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

Strittmatter, A.

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

Sturman, B.

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett.91(17), 176602 (2003).
[CrossRef] [PubMed]

Tamura, H.

H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994).
[CrossRef]

Tan, B.

Tang, B.

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Trager-Cowan, C.

X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993).
[CrossRef]

Trojánek, F.

Tsybeskov, L.

L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B Condens. Matter49(11), 7821–7824 (1994).
[CrossRef] [PubMed]

Uttamchandani, D.

X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993).
[CrossRef]

Valenta, J.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Vandyshev, J. V.

L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B Condens. Matter49(11), 7821–7824 (1994).
[CrossRef] [PubMed]

Venkatakrishnan, K.

Venkataramanan, V.

Veprek, S.

H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994).
[CrossRef]

Vinciguerra, V.

V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
[CrossRef]

von Borczyskowski, C.

J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008).
[CrossRef] [PubMed]

Walters, R. J.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

Wang, Y. L.

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Wehrspohn, R. B.

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

Wirschem, T.

H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994).
[CrossRef]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Wu, Q.

Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, “Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy,” Opt. Express20(2), 960–965 (2012).
[CrossRef] [PubMed]

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Xu, J.

Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, “Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy,” Opt. Express20(2), 960–965 (2012).
[CrossRef] [PubMed]

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Yang, C.

Yang, M.

Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, “Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy,” Opt. Express20(2), 960–965 (2012).
[CrossRef] [PubMed]

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Yao, J.

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Younkin, R.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Yu, X.

Yu, Z.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Zhang, X.

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Zhu, M.

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

Zídek, K.

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Žídek, K.

ACS Nano

K. Kůsová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, and S. Bakardjieva, “Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure,” ACS Nano4(8), 4495–4504 (2010).
[CrossRef] [PubMed]

Ann. Phys. (Leipzig)

R. Kohlrausch, “Nachtrag ueber die elastische Nachwirkung beim Cocon-und Glasfaden, und die hygroskopische Eigenschaft des ersteren,” Ann. Phys. (Leipzig)12, 393–399 (1847).

Appl. Phys. Lett.

T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, “Recombination dynamics of localized excitons in InGaN quantum dots,” Appl. Phys. Lett.85(11), 1946–1948 (2004).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, “Visible luminescence from silicon surfaces microstructured in air,” Appl. Phys. Lett.81(11), 1999–2001 (2002).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715–1717 (2003).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafer,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett.58(8), 856–858 (1991).
[CrossRef]

T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Appl. Phys. Lett.65(14), 1814–1816 (1994).
[CrossRef]

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett.89(3), 033506 (2006).
[CrossRef]

H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, “Origin of the green/blue luminescence from nanocrystalline silicon,” Appl. Phys. Lett.65(12), 1537–1539 (1994).
[CrossRef]

G. Ledoux, J. Gong, and F. Huisken, “Effect of passivation and aging on the photoluminescence of silicon nanocrystals,” Appl. Phys. Lett.79(24), 4028–4030 (2001).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. E. Paje and J. Llopis, “Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process.59(6), 569–574 (1994).
[CrossRef]

J. Appl. Phys.

V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000).
[CrossRef]

M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud, “The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys.83(10), 5386–5393 (1998).
[CrossRef]

Laser Part. Beams

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Y. L. Wang, C. Chen, X. C. Ding, L. Z. Chu, Z. C. Deng, W. H. Liang, J. Z. Chen, and G. S. Fu, “Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas,” Laser Part. Beams29(01), 105–111 (2011).
[CrossRef]

Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, “Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases,” Laser Part. Beams (to be published).

Nano Lett.

J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, “Electron-phonon coupling and localization of excitons in single silicon nanocrystals,” Nano Lett.8(2), 656–660 (2008).
[CrossRef] [PubMed]

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrytal quantum dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Nanotechnology

F. Sangghaleh, B. Bruhn, T. Schmidt, and J. Linnros, “Exciton lifetime measurements on single silicon quantum dots,” Nanotechnology24(22), 225204 (2013).
[CrossRef] [PubMed]

Nat. Mater.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B69(15), 155311 (2004).
[CrossRef]

T. Schmidt, A. I. Chizhik, A. M. Chizhik, K. Potrick, A. J. Meixner, and F. Huisken, “Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals,” Phys. Rev. B86(12), 125302 (2012).
[CrossRef]

Phys. Rev. B Condens. Matter

L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, “Blue emission in porous silicon: Oxygen-related photoluminescence,” Phys. Rev. B Condens. Matter49(11), 7821–7824 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

B. Sturman, E. Podivilov, and M. Gorkunov, “Origin of stretched exponential relaxation for hopping-transport models,” Phys. Rev. Lett.91(17), 176602 (2003).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

X. Chen, D. Uttamchandani, C. Trager-Cowan, and K. P. O’Donnell, “Luminescence from porous silicon,” Semicond. Sci. Technol.8(1), 92–96 (1993).
[CrossRef]

Solid State Commun.

R. W. Collins, M. A. Paesler, and W. Paul, “The temperature dependence of photoluminescence in a-Si: H alloys,” Solid State Commun.34(10), 833–836 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics