Abstract

We design and experimentally demonstrate 50 picoseconds (ps) low loss delay line on 300 nm SOI platform. The delay line unit consists of straight rib waveguide and strip bend section linked by a transition taper waveguide. Low propagation loss of ~0.1 dB/cm is achieved on the straight rib waveguide. With taking into account both low loss and desirable delay, a complete design and characterization process for passive delay line is presented. Our measurement results show that about 0.7 dB excess loss is achievable for 50 ps delay. The loss can be further reduced by adjusting the layout parameters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
    [CrossRef]
  2. L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.
  3. Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A79(1), 013805 (2009).
    [CrossRef]
  4. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008).
    [CrossRef] [PubMed]
  5. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express18(25), 26525–26534 (2010).
    [CrossRef] [PubMed]
  6. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm. 3, 867 (2012).
  7. Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).
  8. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency silicon-on-Insulator grating coupler based on a poly-silicon overlay,” Opt. Express14(24), 11622–11630 (2006).
    [CrossRef] [PubMed]
  9. Z. Xiao, F. Luan, T. Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Opt. Lett.37(4), 530–532 (2012).
    [CrossRef] [PubMed]
  10. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express20(11), 12035–12039 (2012).
    [CrossRef] [PubMed]
  11. G. S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” San Francisco, CA: Opt. Soc. Amer., 2004.
  12. W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J.3(3), 422–432 (2011).
    [CrossRef]
  13. Lumerical FDTD Solutions 8.0, http://www.lumerical.com/ .

2012 (3)

2011 (1)

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J.3(3), 422–432 (2011).
[CrossRef]

2010 (1)

2009 (1)

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A79(1), 013805 (2009).
[CrossRef]

2008 (1)

2007 (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

2006 (1)

Baets, R.

Bogaerts, W.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J.3(3), 422–432 (2011).
[CrossRef]

Boyd, R. W.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A79(1), 013805 (2009).
[CrossRef]

Bruns, J.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

Cardenas, J.

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm. 3, 867 (2012).

Cunningham, J. E.

Ferrari, C.

Foster, M. A.

Gaeta, A. L.

Huei Lim, P.

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Khurgin, J. B.

Krishnamoorthy, A. V.

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm. 3, 867 (2012).

Lee, J.-H.

Li, G.

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm. 3, 867 (2012).

Liow, T. Y.

Z. Xiao, F. Luan, T. Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Opt. Lett.37(4), 530–532 (2012).
[CrossRef] [PubMed]

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Lipson, M.

Lira, H. L. R.

Luan, F.

Z. Xiao, F. Luan, T. Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Opt. Lett.37(4), 530–532 (2012).
[CrossRef] [PubMed]

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Luo, X.

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Luo, Y.

Martinelli, M.

Mekis, A.

Melloni, A.

Mitze, T.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

Morichetti, F.

Morton, P.

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm. 3, 867 (2012).

Petermann, K.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

Poitras, C. B.

Prabhathan, P.

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Raj, K.

Richter, T.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

Roelkens, G.

Schubert, C.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Selvaraja, S. K.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J.3(3), 422–432 (2011).
[CrossRef]

Sherwood-Droz, N.

Shi, Z.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A79(1), 013805 (2009).
[CrossRef]

Shubin, I.

Shum, P.

Silalahi, S. T. H.

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Thacker, H.

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm. 3, 867 (2012).

Van Thourhout, D.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Voigt, K.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

Winzer, G.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Xiao, Z.

Z. Xiao, F. Luan, T. Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Opt. Lett.37(4), 530–532 (2012).
[CrossRef] [PubMed]

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Yao, J.

Zhang, B.

Zhang, J.

Z. Xiao, F. Luan, T. Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Opt. Lett.37(4), 530–532 (2012).
[CrossRef] [PubMed]

Z. Xiao, X. Luo, P. Huei Lim, P. Prabhathan, S. T. H. Silalahi, T. Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express (submitted to).

Zheng, X.

Zimmermann, L.

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

IEEE Photon. J. (1)

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J.3(3), 422–432 (2011).
[CrossRef]

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (1)

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A79(1), 013805 (2009).
[CrossRef]

Ultra-low-loss optical delay line on a silicon chip (1)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm. 3, 867 (2012).

Other (3)

L. Zimmermann, K. Voigt, G. Winzer, T. Mitze, J. Bruns, K. Petermann, T. Richter, and C. Schubert, “Silicon-on-Insulator (SOI) delay-Line interferometer with low polarization-dependent frequency shift for 40 Gbit/s DPSK Demodulation,” ECOC, Berlin, Germany, Sept. 2007.

G. S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” San Francisco, CA: Opt. Soc. Amer., 2004.

Lumerical FDTD Solutions 8.0, http://www.lumerical.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The x component of E-field in the proposed strip and rib waveguides.

Fig. 2
Fig. 2

(a) The cut back layout of the rib waveguides; (b) the main parameters for the delay line unit structure.

Fig. 3
Fig. 3

The loss performance for (a) rib waveguide II and (b) rib waveguide III.

Fig. 4
Fig. 4

Crosstalk between two neighboring waveguides versus spacing from 2 to 6 µm.

Fig. 5
Fig. 5

The microscope photos of the proposed delay line units the structure top view (a) and the details (b) and (c).

Fig. 6
Fig. 6

(a) loss measurement setup and (b) group delay characterization setup.

Fig. 7
Fig. 7

The excess loss measurement for several type of delay units (a) S2 {2, 10µm, 6µm, 969.229µm}, (b) S2 {3, 10µm, 6µm, 619.168µm} and (c) S1 {3, 10µm, 6µm, 619.168µm}.

Fig. 8
Fig. 8

The pulse delay measurement for delay units: (a) and (c) for S2 {2, 10µm, 6µm, 969.229µm}; (b) and (d) for S2 {3, 10µm, 6µm, 619.168µm} through 1, 2 and 3 delay units.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

min:Loss(N,r,d,L, w s , w b ) s.t.{ delay=50ps;r10um; d6um;L40um(S1);L600um(S2). { S bend: L sb =2 30 2 + [ (2rd) 2 ] 2 ;straight: L s =(2N1)L+L60; bend: L b =π[r+(N1)d]/2+π(r+Nd)/2+[2πr+πd(N1)]N.

Metrics