Abstract

We present a novel concept on designing a bull’s eye structure for a single-wavelength optical source. The plasmonic far-field around a subwavelength aperture on a thin gold film is calculated by finite-difference time-domain method. Based on the annular field intensity distribution on the film surface, we present a method for determining a fairly optimal first groove radius and a periodicity of the grooves that show enhanced transmission. By additionally fine-tuning groove width and groove depth, we have achieved a transmission factor of 9.74. Our novel method has high potential in applications such as silicon infrared sensors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  3. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement,” ACS Nano6(5), 4341–4348 (2012).
    [CrossRef] [PubMed]
  4. Z. Li, Z. Yang, and H. Xu, “Comment on “self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
    [CrossRef] [PubMed]
  5. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
    [CrossRef] [PubMed]
  6. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003).
    [CrossRef] [PubMed]
  7. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett.31(15), 2341–2343 (2006).
    [CrossRef] [PubMed]
  8. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
    [CrossRef]
  9. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
    [CrossRef]
  10. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
    [CrossRef] [PubMed]
  11. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006).
    [CrossRef]
  12. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99(4), 043902 (2007).
    [CrossRef] [PubMed]
  13. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
    [CrossRef] [PubMed]
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
    [CrossRef] [PubMed]
  15. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008).
    [CrossRef] [PubMed]
  16. Y. Cui and S. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express17(16), 13995–14000 (2009).
    [CrossRef] [PubMed]
  17. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  18. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
    [CrossRef] [PubMed]
  19. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express13(9), 3535–3542 (2005).
    [CrossRef] [PubMed]
  20. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003).
    [CrossRef]
  21. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
    [CrossRef] [PubMed]
  22. G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
    [CrossRef]
  23. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
    [CrossRef]
  24. G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat.EMC-23(4), 377–382 (1981).
    [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

2012 (1)

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement,” ACS Nano6(5), 4341–4348 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (2)

2009 (1)

2008 (1)

2007 (1)

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99(4), 043902 (2007).
[CrossRef] [PubMed]

2006 (3)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006).
[CrossRef]

Z. Li, Z. Yang, and H. Xu, “Comment on “self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett.31(15), 2341–2343 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express13(9), 3535–3542 (2005).
[CrossRef] [PubMed]

2004 (4)

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

2003 (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003).
[CrossRef]

2002 (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

2001 (1)

1981 (1)

G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat.EMC-23(4), 377–382 (1981).
[CrossRef]

’t Hooft, G. W.

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99(4), 043902 (2007).
[CrossRef] [PubMed]

Agrawal, A.

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Bonod, N.

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Cao, H.

Carretero-Palacios, S.

Chang, C. K.

Chang, S.-H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Chang, Y. C.

Cui, Y.

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement,” ACS Nano6(5), 4341–4348 (2012).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Garcia-Vidal, F. J.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

Genet, C.

Gérard, D.

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

He, S.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Janssen, O. T. A.

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99(4), 043902 (2007).
[CrossRef] [PubMed]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Lee, C. K.

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Lezec, H.

Lezec, H. J.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Li, Z.

Z. Li, Z. Yang, and H. Xu, “Comment on “self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

Lin, D. Z.

Lin, M. W.

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Liu, J. M.

Maeda, N.

Mahboub, O.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Martin-Moreno, L.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Miyanishi, T.

Mur, G.

G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat.EMC-23(4), 377–382 (1981).
[CrossRef]

Nahata, A.

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express13(9), 3535–3542 (2005).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Nedyalkov, N. N.

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

Obara, G.

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

Obara, M.

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Palacios, S. C.

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement,” ACS Nano6(5), 4341–4348 (2012).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Popov, E.

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006).
[CrossRef]

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement,” ACS Nano6(5), 4341–4348 (2012).
[CrossRef] [PubMed]

Rigneault, H.

Rodrigo, S. G.

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006).
[CrossRef]

Tanaka, Y.

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

Terakawa, M.

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

Thio, T.

Urbach, H. P.

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99(4), 043902 (2007).
[CrossRef] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

Wenger, J.

Xu, H.

Z. Li, Z. Yang, and H. Xu, “Comment on “self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

Yang, Z.

Z. Li, Z. Yang, and H. Xu, “Comment on “self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

Yeh, C. S.

Yeh, J. T.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

ACS Nano (1)

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement,” ACS Nano6(5), 4341–4348 (2012).
[CrossRef] [PubMed]

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1-2), 11–18 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83(22), 4500 (2003).
[CrossRef]

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett.85(3), 467 (2004).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat.EMC-23(4), 377–382 (1981).
[CrossRef]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Opt. Express (8)

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express13(9), 3535–3542 (2005).
[CrossRef] [PubMed]

N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008).
[CrossRef] [PubMed]

Y. Cui and S. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express17(16), 13995–14000 (2009).
[CrossRef] [PubMed]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (4)

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99(4), 043902 (2007).
[CrossRef] [PubMed]

Z. Li, Z. Yang, and H. Xu, “Comment on “self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The conceptual scheme of reverse designing of a bull’s eye structure based on the plasmonic far field around from the central aperture. (a) Light is irradiated on a system only with a central aperture on a gold film. (b) The electric field intensity distribution generated from the interference of the incident light and the scattered far-field from the central aperture is calculated. (c) A bull’s eye structure is designed so that grooves are structured with the peak intensities positioned at the center of the grooves, and its transmission is also calculated. (d) By additionally adjusting the parameters based on the structure designed in (c), a bull’s eye structure with higher transmission has been designed.

Fig. 2
Fig. 2

(a) The electric field intensity distribution generated by the interference of incident light and scattered far-field from an aperture d in diameter. The positions of the peak intensities are the same when d is 400 nm or more in diameter. When d is 300 nm or smaller, the peak of the electric field intensity shifts away from the central aperture. (b) The transmission spectrum for d = 400 nm.

Fig. 3
Fig. 3

The electric field intensity distribution generated when light was incident uniformly over the gold film surface with an aperture 400 nm in diameter in the center. The peak intensity is generated by a period of 800 nm, with the closest peak to the central aperture being 540 nm from the center.

Fig. 4
Fig. 4

(a) The electric field intensity distribution of the bull’s eye structure designed according to the interfered far-field when light is incident on the surface of the structure. (a1 = 540 nm, d = 400 nm, g = 50 nm, h = 90 nm, t = 280 nm, N = 3). (b) The electric field intensity distribution of the same structure with additional grooves in between.

Fig. 5
Fig. 5

Dependence of the transmission on (a) first groove radius a1 with other parameters fixed to the original structure and that on (b) groove period p with other parameters fixed to the original structure. In Fig. 5(a), transmission was maximum at a1 = 590 nm (d = 400 nm, p = 800 nm, g = 50 nm, h = 90 nm, t = 280 nm, N = 3).

Fig. 6
Fig. 6

Dependence of the transmission on (a) groove width g (p = 780 nm, d = 400 nm, h = 90 nm, t = 280 nm, N = 3), (b) groove depth h when g = 50 nm and g = 300 nm (p = 780 nm, d = 400 nm, t = 280 nm, N = 3).

Fig. 7
Fig. 7

The electric field intensity distribution of the cross section for different groove width g, and groove height h.

Fig. 8
Fig. 8

A system of a bull’s eye structure with a Si substrate right under the structure. The electric field intensity at the bottom surface of the central aperture is shown for (a) linearly and (b) circularly polarized incident light. The electric field intensity distribution of the cross section is shown for (c) linearly and (d) circularly polarized incident light (p = 780 nm, g = 300 nm, h = 90 nm, d = 400 nm, t = 280 nm, N = 3). (e) The transmitting power through the Si substrate for linearly polarized and circularly polarized light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T= A S z dA I 0 π d 2
λ spp = λ inc ε m +1 ε m
λ res =p ε m ε(ω) ε m +ε(ω)

Metrics