Abstract

For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
    [CrossRef]
  2. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
    [CrossRef]
  3. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
    [CrossRef] [PubMed]
  4. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
    [CrossRef]
  5. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
    [CrossRef] [PubMed]
  6. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
    [CrossRef]
  7. M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
    [CrossRef] [PubMed]
  8. Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
    [CrossRef] [PubMed]
  9. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
    [CrossRef] [PubMed]
  10. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012).
    [CrossRef]
  11. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012).
    [CrossRef] [PubMed]
  12. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).
  13. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
    [CrossRef]
  14. D. Wiersma, “Disordered photonics,” Nat. Photonics7(3), 188–196 (2013).
    [CrossRef]
  15. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
    [CrossRef] [PubMed]
  16. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
    [CrossRef] [PubMed]
  17. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004).
    [CrossRef] [PubMed]
  18. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
    [CrossRef] [PubMed]
  19. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
    [CrossRef]
  20. P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics7(1), 66–71 (2012).
    [CrossRef]
  21. Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
    [CrossRef]
  22. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007).
    [CrossRef] [PubMed]
  23. G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997).
    [CrossRef]
  24. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000).
    [CrossRef] [PubMed]
  25. J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
    [CrossRef]
  26. J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A82(6), 063835 (2010).
    [CrossRef]
  27. X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B24(10), A26–A33 (2007).
    [CrossRef]
  28. Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A341(1-4), 339–344 (2005).
    [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  30. C. E. Preda, G. Ravet, A. A. Fotiadi, and P. Mégret, “Iterative method for Brillouin fiber ring resonator,” in CLEO/Europe 2011 Conference, OSA Technical Digest (Optical Society of America, 2011), paper CJ_P27.
    [CrossRef]
  31. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011).
    [CrossRef] [PubMed]
  32. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
    [CrossRef] [PubMed]
  33. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
    [CrossRef] [PubMed]
  34. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
    [CrossRef] [PubMed]
  35. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
    [CrossRef] [PubMed]
  36. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
    [CrossRef]
  37. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  38. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998).
    [CrossRef] [PubMed]
  39. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004).
    [CrossRef] [PubMed]
  40. M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron.31(3), 468–471 (1995).
    [CrossRef]
  41. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett.26(2), 58–60 (2001).
    [CrossRef] [PubMed]
  42. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007).
    [CrossRef]
  43. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
    [CrossRef] [PubMed]

2013 (2)

2012 (9)

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics7(1), 66–71 (2012).
[CrossRef]

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
[CrossRef]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012).
[CrossRef]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

2011 (7)

2010 (6)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A82(6), 063835 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).

2009 (2)

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

2008 (1)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

2007 (4)

2005 (1)

Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A341(1-4), 339–344 (2005).
[CrossRef]

2004 (2)

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004).
[CrossRef] [PubMed]

J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997).
[CrossRef]

1995 (1)

M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron.31(3), 468–471 (1995).
[CrossRef]

1972 (1)

Alcon-Camas, M.

Andreasen, J.

J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A82(6), 063835 (2010).
[CrossRef]

X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B24(10), A26–A33 (2007).
[CrossRef]

Ania-Castanon, J. D.

Ania-Castañón, J. D.

Babin, S. A.

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007).
[CrossRef]

Bao, X.

Bednyakova, A. E.

Berger, G. A.

G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997).
[CrossRef]

Cao, H.

J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A82(6), 063835 (2010).
[CrossRef]

X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B24(10), A26–A33 (2007).
[CrossRef]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Chang, R. P. H.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Chang, S.-H.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Chen, L.

Churkin, D. V.

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007).
[CrossRef]

Dalloz, N.

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

El-Taher, A. E.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Fedoruk, M. P.

Fotiadi, A. A.

Frazão, O.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).

Ge, L.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Genack, A. Z.

G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997).
[CrossRef]

Gorbunov, O. A.

Harper, P.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

Ho, S. T.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Ismagulov, A. E.

Jacquod, P.

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics7(1), 66–71 (2012).
[CrossRef]

Jia, X.

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
[CrossRef]

Jia, X. H.

Jiang, X.

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000).
[CrossRef] [PubMed]

Jiang, Y.

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
[CrossRef]

Johnson, G. A.

Kablukov, S. I.

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007).
[CrossRef]

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

Kempe, M.

G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997).
[CrossRef]

Kiyan, R. V.

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Kobelke, J.

Kurkov, A. S.

Laming, R. I.

M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron.31(3), 468–471 (1995).
[CrossRef]

Latkin, A. I.

Liu, H.

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
[CrossRef]

Liu, J.

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
[CrossRef]

Liu, X.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Liu, Z. A.

Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A341(1-4), 339–344 (2005).
[CrossRef]

Lopez-Amo, M.

Lu, Y.

Lü, J.

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
[CrossRef]

Marques, M. B.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

Martins, H. F.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

Mermelstein, M. D.

Mezentsev, V. K.

Mujumdar, S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004).
[CrossRef] [PubMed]

Nuño, J.

Pang, M.

Pinto, A. M. R.

Podivilov, E. V.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007).
[CrossRef]

Politko, M. O.

Posey, R.

Randoux, S.

Rao, Y.

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
[CrossRef]

Rao, Y. J.

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004).
[CrossRef] [PubMed]

Rotter, S.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Santos, J. L.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Schuster, K.

Sebbah, P.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007).
[CrossRef] [PubMed]

Seelig, E. W.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Sholokhov, E.

Smirnov, S. V.

Smith, R. G.

Soukoulis, C. M.

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000).
[CrossRef] [PubMed]

Stano, P.

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics7(1), 66–71 (2012).
[CrossRef]

Stone, A. D.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Suret, P.

Torre, R.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004).
[CrossRef] [PubMed]

Türeci, H. E.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Turitsyn, S. K.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

Vanneste, C.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007).
[CrossRef] [PubMed]

Vatnik, I. D.

Vohra, S. T.

Wang, K.

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
[CrossRef]

Wang, S.

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
[CrossRef]

Wang, Z.

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
[CrossRef]

Wang, Z. N.

Wiersma, D.

D. Wiersma, “Disordered photonics,” Nat. Photonics7(3), 188–196 (2013).
[CrossRef]

Wiersma, D. S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004).
[CrossRef] [PubMed]

Wu, X.

Xie, S.

Xie, Y.

Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A341(1-4), 339–344 (2005).
[CrossRef]

Xu, J. Y.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Yamilov, A.

Yang, Z. X.

Zervas, M. N.

M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron.31(3), 468–471 (1995).
[CrossRef]

Zhang, D. Z.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

Zhang, W.

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
[CrossRef]

Zhang, W. L.

Zhou, D. P.

Zhu, J. M.

Appl. Opt. (1)

Appl. Phys. B (2)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron.31(3), 468–471 (1995).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Nat. Photonics (4)

D. Wiersma, “Disordered photonics,” Nat. Photonics7(3), 188–196 (2013).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics7(1), 66–71 (2012).
[CrossRef]

Opt. Commun. (2)

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009).
[CrossRef]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

Opt. Express (8)

J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004).
[CrossRef] [PubMed]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013).
[CrossRef] [PubMed]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

Opt. Lett. (8)

M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
[CrossRef] [PubMed]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
[CrossRef] [PubMed]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007).
[CrossRef] [PubMed]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998).
[CrossRef] [PubMed]

M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett.26(2), 58–60 (2001).
[CrossRef] [PubMed]

Phys. Lett. A (1)

Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A341(1-4), 339–344 (2005).
[CrossRef]

Phys. Rev. A (3)

J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A82(6), 063835 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997).
[CrossRef]

Phys. Rev. Lett. (4)

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000).
[CrossRef] [PubMed]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004).
[CrossRef] [PubMed]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012).
[CrossRef]

Science (1)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

C. E. Preda, G. Ravet, A. A. Fotiadi, and P. Mégret, “Iterative method for Brillouin fiber ring resonator,” in CLEO/Europe 2011 Conference, OSA Technical Digest (Optical Society of America, 2011), paper CJ_P27.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Random DFB fiber laser scheme.

Fig. 2
Fig. 2

(a) Output laser power vs. one-side pump power. (b) Longitudinal power distribution for pump (blue line) and generation (red line for “+” and magenta line for “–“ generation waves).

Fig. 3
Fig. 3

(a) Raman gain profile (grey) and spectrum for generated “+”-wave at laser output as a function of Δλ = λ−1555 nm for two pump powers of 0.85 W (black) and 3 W (red); (b) lasing spectrum bandwidth (rms) depending on generation power (c) spectrum width at P = 2 W at different dispersion and nonlinearity value.

Fig. 4
Fig. 4

(a) Typical intensity dynamics (grey shows original simulated data, black – smoothed with a bandwidth of 40 GHz, red – average lasing power level), (b) Intensity ACF and (c) intensity pdfs for different fiber dispersions. Pump power is 2 W on all graphs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A p ± z 1 v gs A p ± t + i 2 β 2p 2 A p ± t 2 + α p 2 A p ± =i γ p | A p ± | 2 A p ± g p ( ω ) 2 ( | A s ± | 2 + | A s | 2 ) A p ± ,
A s ± z + i 2 β 2s 2 A s ± t 2 + α s 2 A s ± ε( ω ) 2 A s =i γ s | A s ± | 2 A s ± + g s ( ω ) 2 ( | A p ± | 2 + | A p | 2 ) A s ± ,
δ A s +Raylegh =( ε z z+Δz d z + dω | A s ( L z ) | 2 ) A s ( L z prox ) | A s ( L z prox ) | 2 dω ( ω+ ω 0 ) 2 ω 0 2 e i ϕ 0 +iω τ 0 ,

Metrics