Abstract

A fiber-connected ultra-wideband (UWB) sensor network for high-resolution localization which consists of a central station and several sensor nodes is proposed and demonstrated. To make the central station easily identify the received UWB pulses from different sensor nodes, optical time-division multiplexing (OTDM), realized by inserting a certain length of optical fiber between every two sensor nodes, is implemented. Due to the OTDM technology, the UWB pulses received by different sensors are mapped into different time slots, so neither parameter estimation nor clock synchronization is required in the UWB sensor node. All complex signal processing is completed in the central station, which greatly improve the localization accuracy and simplify the system. A proof-of-concept experiment for two-dimensional localization is demonstrated. Spatial resolution as high as 3.9 cm is achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
    [CrossRef]
  2. R. Thoma, O. Hirsch, J. Sachs, and R. Zetik, “UWB sensor networks for position location and imaging of objects and environments,” in the Second European Conference on Antennas and Propagation (EuCAP 2007), pp. 1–9.
  3. J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
    [CrossRef]
  4. N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
    [CrossRef]
  5. H. Soganci, S. Gezici, and H. Poor, “Accurate positioning in ultra-wideband systems,” IEEE Wireless Commun. Mag.18(2), 19–27 (2011).
    [CrossRef]
  6. I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
    [CrossRef]
  7. L. Stoica, A. Rabbachin, and I. Oppermann, “A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation,” IEEE Trans. Microw. Theory Tech.54(4), 1637–1646 (2006).
    [CrossRef]
  8. W. M. Lovelace and J. K. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm.20(9), 1646–1651 (2002).
    [CrossRef]
  9. R. J. Fontana, E. Richley, and J. Barney, “Commercialization of an ultra wideband precision asset location system,” in 2003IEEE Conference on Ultra Wideband Systems and Technologies, pp. 369–373.
    [CrossRef]
  10. G. Cheng, “Accurate TOA-based UWB localization system in coal mine based on WSN,” Phys. Procedia24, 534–540 (2012).
    [CrossRef]
  11. S. L. Pan and J. P. Yao, “UWB over fiber communications: modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
    [CrossRef]
  12. J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in Proc. IEEE Aerospace Conf.2785–792 (2001).
  13. J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm.20(9), 1677–1683 (2002).
    [CrossRef]
  14. S. Gezici and H. V. Poor, “Position estimation via ultra-wide-band signals,” Proc. IEEE97(2), 386–403 (2009).
    [CrossRef]

2012

G. Cheng, “Accurate TOA-based UWB localization system in coal mine based on WSN,” Phys. Procedia24, 534–540 (2012).
[CrossRef]

2011

H. Soganci, S. Gezici, and H. Poor, “Accurate positioning in ultra-wideband systems,” IEEE Wireless Commun. Mag.18(2), 19–27 (2011).
[CrossRef]

2010

2009

S. Gezici and H. V. Poor, “Position estimation via ultra-wide-band signals,” Proc. IEEE97(2), 386–403 (2009).
[CrossRef]

J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
[CrossRef]

2006

L. Stoica, A. Rabbachin, and I. Oppermann, “A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation,” IEEE Trans. Microw. Theory Tech.54(4), 1637–1646 (2006).
[CrossRef]

2005

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

2004

I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
[CrossRef]

2002

W. M. Lovelace and J. K. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm.20(9), 1646–1651 (2002).
[CrossRef]

J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm.20(9), 1677–1683 (2002).
[CrossRef]

Adams, J. C.

J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in Proc. IEEE Aerospace Conf.2785–792 (2001).

Ash, J. N.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

Barney, J.

R. J. Fontana, E. Richley, and J. Barney, “Commercialization of an ultra wideband precision asset location system,” in 2003IEEE Conference on Ultra Wideband Systems and Technologies, pp. 369–373.
[CrossRef]

Capots, L.

J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in Proc. IEEE Aerospace Conf.2785–792 (2001).

Cheng, G.

G. Cheng, “Accurate TOA-based UWB localization system in coal mine based on WSN,” Phys. Procedia24, 534–540 (2012).
[CrossRef]

Correal, N. S.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

Fontana, R. J.

R. J. Fontana, E. Richley, and J. Barney, “Commercialization of an ultra wideband precision asset location system,” in 2003IEEE Conference on Ultra Wideband Systems and Technologies, pp. 369–373.
[CrossRef]

Gezici, S.

H. Soganci, S. Gezici, and H. Poor, “Accurate positioning in ultra-wideband systems,” IEEE Wireless Commun. Mag.18(2), 19–27 (2011).
[CrossRef]

S. Gezici and H. V. Poor, “Position estimation via ultra-wide-band signals,” Proc. IEEE97(2), 386–403 (2009).
[CrossRef]

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

Giannakis, G. B.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

Gregorwich, W.

J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in Proc. IEEE Aerospace Conf.2785–792 (2001).

Haapola, J.

I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
[CrossRef]

Hero, A. O.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

Kinney, P.

J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
[CrossRef]

Kobayashi, H.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

Kyperountas, S.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

Lee, J. Y.

J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm.20(9), 1677–1683 (2002).
[CrossRef]

Liccardo, D.

J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in Proc. IEEE Aerospace Conf.2785–792 (2001).

Lovelace, W. M.

W. M. Lovelace and J. K. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm.20(9), 1646–1651 (2002).
[CrossRef]

Molisch, A. F.

J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
[CrossRef]

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

Moses, R. L.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

Oppermann, I.

L. Stoica, A. Rabbachin, and I. Oppermann, “A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation,” IEEE Trans. Microw. Theory Tech.54(4), 1637–1646 (2006).
[CrossRef]

I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
[CrossRef]

Orlik, P. V.

J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
[CrossRef]

Pan, S. L.

Patwari, N.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

Poor, H.

H. Soganci, S. Gezici, and H. Poor, “Accurate positioning in ultra-wideband systems,” IEEE Wireless Commun. Mag.18(2), 19–27 (2011).
[CrossRef]

Poor, H. V.

S. Gezici and H. V. Poor, “Position estimation via ultra-wide-band signals,” Proc. IEEE97(2), 386–403 (2009).
[CrossRef]

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

Rabbachin, A.

L. Stoica, A. Rabbachin, and I. Oppermann, “A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation,” IEEE Trans. Microw. Theory Tech.54(4), 1637–1646 (2006).
[CrossRef]

I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
[CrossRef]

Richley, E.

R. J. Fontana, E. Richley, and J. Barney, “Commercialization of an ultra wideband precision asset location system,” in 2003IEEE Conference on Ultra Wideband Systems and Technologies, pp. 369–373.
[CrossRef]

Sahinoglu, Z.

J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
[CrossRef]

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

Scholtz, R. A.

J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm.20(9), 1677–1683 (2002).
[CrossRef]

Shelby, Z.

I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
[CrossRef]

Soganci, H.

H. Soganci, S. Gezici, and H. Poor, “Accurate positioning in ultra-wideband systems,” IEEE Wireless Commun. Mag.18(2), 19–27 (2011).
[CrossRef]

Stoica, L.

L. Stoica, A. Rabbachin, and I. Oppermann, “A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation,” IEEE Trans. Microw. Theory Tech.54(4), 1637–1646 (2006).
[CrossRef]

I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
[CrossRef]

Tian, Z.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

Townsend, J. K.

W. M. Lovelace and J. K. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm.20(9), 1646–1651 (2002).
[CrossRef]

Yao, J. P.

Zhang, J.

J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
[CrossRef]

IEEE Commun. Mag.

I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-a practical example,” IEEE Commun. Mag.42(12), S27–S32 (2004).
[CrossRef]

IEEE J. Sel. Areas Comm.

W. M. Lovelace and J. K. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm.20(9), 1646–1651 (2002).
[CrossRef]

J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm.20(9), 1677–1683 (2002).
[CrossRef]

IEEE Signal Process. Mag.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag.22(4), 70–84 (2005).
[CrossRef]

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag.22(4), 54–69 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

L. Stoica, A. Rabbachin, and I. Oppermann, “A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation,” IEEE Trans. Microw. Theory Tech.54(4), 1637–1646 (2006).
[CrossRef]

IEEE Wireless Commun. Mag.

H. Soganci, S. Gezici, and H. Poor, “Accurate positioning in ultra-wideband systems,” IEEE Wireless Commun. Mag.18(2), 19–27 (2011).
[CrossRef]

J. Lightwave Technol.

Phys. Procedia

G. Cheng, “Accurate TOA-based UWB localization system in coal mine based on WSN,” Phys. Procedia24, 534–540 (2012).
[CrossRef]

Proc. IEEE

S. Gezici and H. V. Poor, “Position estimation via ultra-wide-band signals,” Proc. IEEE97(2), 386–403 (2009).
[CrossRef]

J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, “UWB systems for wireless sensor networks,” Proc. IEEE97(2), 313–331 (2009).
[CrossRef]

Other

J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in Proc. IEEE Aerospace Conf.2785–792 (2001).

R. Thoma, O. Hirsch, J. Sachs, and R. Zetik, “UWB sensor networks for position location and imaging of objects and environments,” in the Second European Conference on Antennas and Propagation (EuCAP 2007), pp. 1–9.

R. J. Fontana, E. Richley, and J. Barney, “Commercialization of an ultra wideband precision asset location system,” in 2003IEEE Conference on Ultra Wideband Systems and Technologies, pp. 369–373.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed fiber-connected UWB sensor network using OTDM. EA: electrical amplifier; EOM: electrical-to-optical conversion module; PD: photodetector; LD: laser diode; SMF: single-mode fiber.

Fig. 2
Fig. 2

Geometric method for localization in the OTDM-based UWB sensor network. (a) Geometric model of the OTDM-based UWB sensor network; (b) the simulated typical received UWB sequence.

Fig. 3
Fig. 3

The waveforms (a) generated by the UWB generator and (b) received by the UWB antenna.

Fig. 4
Fig. 4

(a) The waveforms recorded at the output of the PD and (b), (c) zoom-in view of the two groups of UWB waveforms.

Fig. 5
Fig. 5

Cross-correlation results for achieving TDOAs for (a) node A and (b) node B.

Fig. 6
Fig. 6

The geometric locations of ten samples of the estimated positions and their corresponding actual positions.

Tables (1)

Tables Icon

Table 1 Ten Samples of the Estimated Position of the Target

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ L | ST | + L | TA | = L | SA | +c( t TA t A ) L | ST | + L | TB | = L | SB | +c( t TB t B ) ,
{ (x x S ) 2 + (y y S ) 2 + (x x A ) 2 + (y y A ) 2 = ( x S x A ) 2 + ( y S y A ) 2 +c( t TA t A ) (x x S ) 2 + (y y S ) 2 + (x x B ) 2 + (y y B ) 2 = ( x S x B ) 2 + ( y S y B ) 2 +c( t TB t B ) ,

Metrics