Abstract

The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) < 3.10−3). In contrast, bounding equations used to limit ρw(667) retrievals according to the water signal at 555 nm, appeared to be valid for all turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167–1179), was valid for moderately to very turbid waters (ρw(λNIR) < 10−2) while the polynomial function, initially developed by Wang et al. (2012) (Opt. Express 20, 741–753) with remote sensing reflectances over the Western Pacific, was also valid for extremely turbid waters (ρw(λNIR) > 10−2). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm,” Appl. Opt.33, 443–452 (1994).
    [CrossRef] [PubMed]
  2. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt.17, 1631–1636 (1978).
    [CrossRef] [PubMed]
  3. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: The black pixel assumption,” Appl. Opt.39(21), 3582–3591 (2000).
    [CrossRef]
  4. R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).
  5. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express18(7), 7521–7527 (2010).
    [CrossRef] [PubMed]
  6. C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005).
    [CrossRef]
  7. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
    [CrossRef]
  8. J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012).
    [CrossRef]
  9. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113, 635–644 (2009).
    [CrossRef]
  10. R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the Calofornia Bight,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 281–294 (1980).
  11. R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 239–256 (1980).
  12. B. Sturm, “The atmospheric correction of remotely sensed data and the quantitative determination of suspended matter in marine water surface layers,” in Remote Sensing in Meteorology, Oceanography and Hydrology, A. P. Cracknel, eds., (Chister, UK: Ellis Horwood), pp. 163–197 (1981).
  13. B. Sturm, “Selected topics of coastal zone color scanner (CZCS) data evaluation,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknel, eds., (Dordrecht, The Netherlands: D. Reidel), pp. 137–168 (1983).
    [CrossRef]
  14. M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal water,” J. Geophys. Res.89, 4977–4985 (1984).
    [CrossRef]
  15. A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: Use of a reflectance model,” Oceanol. Acta33–50N.SP, (1987).
  16. B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
    [CrossRef]
  17. J. M. Nicolas, P. Y. Deschamps, H. Loisel, and C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).
  18. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt.39, 897–912 (2000).
    [CrossRef]
  19. K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006).
    [CrossRef]
  20. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express20, 741–753 (2012).
    [CrossRef] [PubMed]
  21. Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the Quasi-Analytical Algorithm (QAA v5),” available at: http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf (2009).
  22. C. Goyens, C. Jamet, and K. Ruddick, “Spectral relationships for atmospheric correction. II. Improving the NASA standard and MUMM near infra-red modeling schemes, ” accepted for publication in Opt. Express (2013).
  23. M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011).
    [CrossRef]
  24. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977).
    [CrossRef]
  25. B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).
  26. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35, 4850–4862 (1996).
    [CrossRef] [PubMed]
  27. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt.38, 7442–7455 (1999).
    [CrossRef]
  28. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65 mm to 2.5 mm spectral range,” Appl. Opt.32, 3531–3540 (1993).
    [CrossRef] [PubMed]
  29. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113, 1587–1597 (2009).
    [CrossRef]
  30. M. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114, c10011 (2009).
    [CrossRef]
  31. M. Wang, J. Ahn, L. Jiang, W. Shi, S. Son, Y. Park, and J. Ruy, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express21(3), 3835–3849 (2013).
    [CrossRef] [PubMed]
  32. B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114, 854–866 (2010).
    [CrossRef]
  33. H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).
  34. V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).
  35. D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-Sensing reflectance of turbid sediment-dominated waters,” Appl. Opt.42(15), 2623–2634 (2003).
    [CrossRef] [PubMed]
  36. D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships and modeling,” Appl. Opt.45(10), 2310–2324 (2006).
    [CrossRef] [PubMed]
  37. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
    [CrossRef]
  38. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
    [CrossRef]
  39. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
    [CrossRef]
  40. R. W. Gould, R. A. Arone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt.38(12), 2377–2383 (1999).
    [CrossRef]

2013 (2)

C. Goyens, C. Jamet, and K. Ruddick, “Spectral relationships for atmospheric correction. II. Improving the NASA standard and MUMM near infra-red modeling schemes, ” accepted for publication in Opt. Express (2013).

M. Wang, J. Ahn, L. Jiang, W. Shi, S. Son, Y. Park, and J. Ruy, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

2012 (2)

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express20, 741–753 (2012).
[CrossRef] [PubMed]

J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012).
[CrossRef]

2011 (2)

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011).
[CrossRef]

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

2010 (2)

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114, 854–866 (2010).
[CrossRef]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express18(7), 7521–7527 (2010).
[CrossRef] [PubMed]

2009 (4)

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113, 635–644 (2009).
[CrossRef]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113, 1587–1597 (2009).
[CrossRef]

M. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114, c10011 (2009).
[CrossRef]

2007 (1)

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

2006 (2)

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006).
[CrossRef]

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships and modeling,” Appl. Opt.45(10), 2310–2324 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005).
[CrossRef]

2003 (1)

2000 (2)

1999 (4)

B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
[CrossRef]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt.38, 7442–7455 (1999).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
[CrossRef]

R. W. Gould, R. A. Arone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt.38(12), 2377–2383 (1999).
[CrossRef]

1998 (1)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

1987 (1)

A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: Use of a reflectance model,” Oceanol. Acta33–50N.SP, (1987).

1984 (1)

M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal water,” J. Geophys. Res.89, 4977–4985 (1984).
[CrossRef]

1978 (1)

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977).
[CrossRef]

Ahn, J.

Alberotanza, L.

B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
[CrossRef]

Andersen, J. H.

B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
[CrossRef]

Arnone, R. A.

R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).

Arone, R. A.

Artigas, L. F.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

Austin, R. W.

R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 239–256 (1980).

Babin, M.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
[CrossRef]

Bailey, S. W.

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

Barale, V.

B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
[CrossRef]

Behnert, I.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Bélanger, S.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011).
[CrossRef]

Brajard, J.

J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012).
[CrossRef]

Bricaud, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
[CrossRef]

A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: Use of a reflectance model,” Oceanol. Acta33–50N.SP, (1987).

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

Caillaud, J.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

Carder, K. L.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
[CrossRef]

Castaing, P.

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
[CrossRef]

Cherukuru, N.

Chylek, P.

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

Claustre, H.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
[CrossRef]

Crepon, M.

J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012).
[CrossRef]

C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005).
[CrossRef]

De Cauwer, V.

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006).
[CrossRef]

Desailly, D.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

Deschamps, P. Y.

J. M. Nicolas, P. Y. Deschamps, H. Loisel, and C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).

Dessailly, D.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

Doerffer, R.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Doron, M.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011).
[CrossRef]

Doxaran, D.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

Ferrari, C.

B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).

Fischer, J.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Franz, B. A.

Froidefond, J. M.

Gardel, A.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

Gensac, E.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

Gentili, B.

Gordon, H. R.

Gould, J. R. W.

R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).

Gould, R. W.

Goyens, C.

C. Goyens, C. Jamet, and K. Ruddick, “Spectral relationships for atmospheric correction. II. Improving the NASA standard and MUMM near infra-red modeling schemes, ” accepted for publication in Opt. Express (2013).

Harding, L. W.

M. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114, c10011 (2009).
[CrossRef]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
[CrossRef]

Jamet, C.

C. Goyens, C. Jamet, and K. Ruddick, “Spectral relationships for atmospheric correction. II. Improving the NASA standard and MUMM near infra-red modeling schemes, ” accepted for publication in Opt. Express (2013).

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005).
[CrossRef]

Jiang, L.

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
[CrossRef]

Kou, L.

Labrie, D.

Larkin, D.

B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
[CrossRef]

Lavender, S. J.

Lee, Z. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
[CrossRef]

Lesourd, S.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

Loisel, H.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

J. M. Nicolas, P. Y. Deschamps, H. Loisel, and C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).

Lubac, B.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

Maracci, G.

B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).

Maritorena, S.

Martinolich, P. M.

R. W. Gould, R. A. Arone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt.38(12), 2377–2383 (1999).
[CrossRef]

R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).

Mériaux, X.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

Mobley, C. D.

Moore, G.

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006).
[CrossRef]

Morel, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35, 4850–4862 (1996).
[CrossRef] [PubMed]

A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: Use of a reflectance model,” Oceanol. Acta33–50N.SP, (1987).

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977).
[CrossRef]

Moulin, C.

C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005).
[CrossRef]

J. M. Nicolas, P. Y. Deschamps, H. Loisel, and C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).

Nechad, B.

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114, 854–866 (2010).
[CrossRef]

Neukermans, G.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

Nicolas, J. M.

J. M. Nicolas, P. Y. Deschamps, H. Loisel, and C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).

Ovidio, F.

Park, Y.

M. Wang, J. Ahn, L. Jiang, W. Shi, S. Son, Y. Park, and J. Ruy, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114, 854–866 (2010).
[CrossRef]

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006).
[CrossRef]

Petzold, T.

R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 239–256 (1980).

Poteau, A.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

Prieur, L.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977).
[CrossRef]

Ransibrahmanakul, V.

R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).

Rijkeboer, M.

Robinson, W.

Ruddick, K.

C. Goyens, C. Jamet, and K. Ruddick, “Spectral relationships for atmospheric correction. II. Improving the NASA standard and MUMM near infra-red modeling schemes, ” accepted for publication in Opt. Express (2013).

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114, 854–866 (2010).
[CrossRef]

Ruddick, K. G.

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006).
[CrossRef]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt.39, 897–912 (2000).
[CrossRef]

Ruy, J.

Santer, R.

J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012).
[CrossRef]

Schaale, M.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Schlittenhardt, P.

B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).

Schroeder, T.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Shi, W.

M. Wang, J. Ahn, L. Jiang, W. Shi, S. Son, Y. Park, and J. Ruy, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express20, 741–753 (2012).
[CrossRef] [PubMed]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113, 635–644 (2009).
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113, 1587–1597 (2009).
[CrossRef]

Siegel, D. A.

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the Calofornia Bight,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 281–294 (1980).

Son, S.

M. Wang, J. Ahn, L. Jiang, W. Shi, S. Son, Y. Park, and J. Ruy, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

M. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114, c10011 (2009).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113, 635–644 (2009).
[CrossRef]

Stumpf, R. P.

R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).

Sturm, B.

B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
[CrossRef]

M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal water,” J. Geophys. Res.89, 4977–4985 (1984).
[CrossRef]

B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).

B. Sturm, “The atmospheric correction of remotely sensed data and the quantitative determination of suspended matter in marine water surface layers,” in Remote Sensing in Meteorology, Oceanography and Hydrology, A. P. Cracknel, eds., (Chister, UK: Ellis Horwood), pp. 163–197 (1981).

B. Sturm, “Selected topics of coastal zone color scanner (CZCS) data evaluation,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknel, eds., (Dordrecht, The Netherlands: D. Reidel), pp. 137–168 (1983).
[CrossRef]

Thiria, S.

J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012).
[CrossRef]

C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005).
[CrossRef]

Turner, M.

B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
[CrossRef]

Vantrepotte, V.

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

Viollier, M.

M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal water,” J. Geophys. Res.89, 4977–4985 (1984).
[CrossRef]

Wang, M.

Werdell, P. J.

Wilson, W. H.

R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the Calofornia Bight,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 281–294 (1980).

Appl. Opt. (10)

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm,” Appl. Opt.33, 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt.17, 1631–1636 (1978).
[CrossRef] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: The black pixel assumption,” Appl. Opt.39(21), 3582–3591 (2000).
[CrossRef]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt.39, 897–912 (2000).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35, 4850–4862 (1996).
[CrossRef] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt.38, 7442–7455 (1999).
[CrossRef]

L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65 mm to 2.5 mm spectral range,” Appl. Opt.32, 3531–3540 (1993).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-Sensing reflectance of turbid sediment-dominated waters,” Appl. Opt.42(15), 2623–2634 (2003).
[CrossRef] [PubMed]

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships and modeling,” Appl. Opt.45(10), 2310–2324 (2006).
[CrossRef] [PubMed]

R. W. Gould, R. A. Arone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt.38(12), 2377–2383 (1999).
[CrossRef]

Int. J. Remote Sens. (1)

B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999).
[CrossRef]

Int. J. Remote Sens. (1)

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

J. Atmos. Ocean. Tech. (1)

C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005).
[CrossRef]

J. Coastal Res. (2)

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).

V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).

J. Geophys. Res. (5)

M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal water,” J. Geophys. Res.89, 4977–4985 (1984).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999).
[CrossRef]

M. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114, c10011 (2009).
[CrossRef]

Limnol. Oceanogr. (2)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977).
[CrossRef]

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006).
[CrossRef]

Oceanol. Acta (1)

A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: Use of a reflectance model,” Oceanol. Acta33–50N.SP, (1987).

Opt. Express (4)

Remote Sens. Environ. (5)

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011).
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113, 1587–1597 (2009).
[CrossRef]

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114, 854–866 (2010).
[CrossRef]

J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113, 635–644 (2009).
[CrossRef]

Other (8)

R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the Calofornia Bight,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 281–294 (1980).

R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 239–256 (1980).

B. Sturm, “The atmospheric correction of remotely sensed data and the quantitative determination of suspended matter in marine water surface layers,” in Remote Sensing in Meteorology, Oceanography and Hydrology, A. P. Cracknel, eds., (Chister, UK: Ellis Horwood), pp. 163–197 (1981).

B. Sturm, “Selected topics of coastal zone color scanner (CZCS) data evaluation,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknel, eds., (Dordrecht, The Netherlands: D. Reidel), pp. 137–168 (1983).
[CrossRef]

R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the Quasi-Analytical Algorithm (QAA v5),” available at: http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf (2009).

B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).

J. M. Nicolas, P. Y. Deschamps, H. Loisel, and C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Selected ρw(λ) spectra between 400 and 900 nm and reflectance spectra normalized at 780 nm, ρwn780(λ), in the 600–900 nm range.

Fig. 2
Fig. 2

(a) In situ ρw(667) versus ρw(555) including the upper and lower bounds to constrain ρw(667) as suggested by Lee et al. (2009), and observed versus modeled ρw(670) according to the spectral relationships suggested by (b) Austin and Petzold (1980) in Sturm (1983), (c) Sturm (1981, used for the CZCS AC over turbid waters) in Sturm (1983) and (d) Sturm (1981, developed with AAOT data) in Sturm (1983).

Fig. 3
Fig. 3

Reflectance ratio in the red and the NIR for (a) SeaWiFS: ρw(865) versus ρw(670) and ρw(765), (b) MODIS: ρw(869) versus ρw(678) and ρw(748), and (c) MERIS: ρw(865) versus ρw(705) and ρw(775). The constant α (λ1,λ2) suggested by Ruddick et al. (2006) based on in situ measurements and on aw(λ) (Kou et al., 1993) are represented for each reflectance ratio by a plain and dashed line, respectively. Horizontal grey lines indicate the limit between moderately turbid and very turbid waters (3.0−3).

Fig. 4
Fig. 4

ρw(765) versus ρw(865) according to Ruddick et al. (2006) (R, dashed line) and Doron et al. (2011) (D, grey bands) for (a) moderately turbid and (b) very turbid waters and ρw(748) versus ρw(869) for (c) moderately turbid and (d) very turbid waters with the polynomial function proposed by Wang et al. (2012) (W, plain grey line) and the constant ratio proposed by Ruddick et al. (2006) (R, dashed line). Spectra from extremely turbid coastal waters of French Guiana described in Section 4 are indicated by a triangle.

Tables (3)

Tables Icon

Table 1 Review of the spectral relationships and their applications

Tables Icon

Table 2 Statistics of the 105 ρw(λ) (dimensionless) spectra for the ocean color bands of MODIS Aqua in the 412–869 nm range.

Tables Icon

Table 3 Statistical performance of spectral relationships in the red (av. RE: average Relative Error, av. Bias: average Bias and RMSE: Root Mean Square Error)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ rc TOA ( λ ) = ρ a TOA ( λ ) + ρ ra TOA ( λ ) + t θ v ( λ ) t θ 0 ( λ ) ρ w ( λ )

Metrics