Abstract

We outline a simple laser cavity comprising an opaque ring and a circular aperture that is capable of producing spatially tuneable laser modes, from a Gaussian beam to a Flat-top beam. The tuneability is achieved by varying the diameter of the aperture and thus requires no realignment of the cavity. We demonstrate this principle using a digital laser with an intra-cavity spatial light modulator, and confirm the predicted properties of the resonator experimentally.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (Taylor and Francis, 2006).
  2. F. M. Dickey and S. C. Holswade, Laser Beam Shaping, Theory and Techniques (Marcel Dekker, 2000).
  3. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt.39(30), 5488–5499 (2000).
    [CrossRef] [PubMed]
  4. A. Laskin and V. Laskin, “Imaging techniques with refractive beam shaping optics,” Proc. SPIE8490, 84900J, 84900J-11 (2012), doi:.
    [CrossRef]
  5. I. A. Litvin and A. Forbes, “Intra-cavity flat-top beam generation,” Opt. Express17(18), 15891–15903 (2009).
    [CrossRef] [PubMed]
  6. P. A. Bélanger and C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett.16(14), 1057–1059 (1991).
    [CrossRef] [PubMed]
  7. P. A. Bélanger, R. L. Lachance, and C. Paré, “Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator,” Opt. Lett.17(10), 739–741 (1992).
    [CrossRef] [PubMed]
  8. J. R. Leger, D. Chen, and Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett.19(2), 108–110 (1994).
    [CrossRef] [PubMed]
  9. I. A. Litvin and A. Forbes, “Gaussian mode selection with intracavity diffractive optics,” Opt. Lett.34(19), 2991–2993 (2009).
    [CrossRef] [PubMed]
  10. J. R. Leger, D. Chen, and K. Dai, “High modal discrimination in a Nd:YAG laser resonator with internal phase gratings,” Opt. Lett.19(23), 1976–1978 (1994).
    [CrossRef] [PubMed]
  11. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt.37(21), 4663–4668 (1998).
    [CrossRef] [PubMed]
  12. T. Y. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt.35(15), 2554–2561 (1996).
    [CrossRef] [PubMed]
  13. T. Y. Cherezova, S. S. Chesnokov, L. N. Kaptsov, V. V. Samarkin, and A. V. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt.40(33), 6026–6033 (2001).
    [CrossRef] [PubMed]
  14. M. Gerber and T. Graf, “Generation of super-Gaussian modes in Nd:YAG lasers with a graded-phase mirror,” IEEE J. Quantum Electron.40(6), 741–746 (2004).
    [CrossRef]
  15. A. J. Caley, M. J. Thomson, J. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express15(17), 10699–10704 (2007).
    [CrossRef] [PubMed]
  16. S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun.4, 2289 (2013), doi:.
    [CrossRef] [PubMed]
  17. A. Hasnaoui and K. Ait-Ameur, “Properties of a laser cavity containing an absorbing ring,” Appl. Opt.49(21), 4034–4043 (2010).
    [CrossRef] [PubMed]
  18. A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
    [CrossRef]
  19. V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett.28(24), 2521–2523 (2003).
    [CrossRef] [PubMed]
  20. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A24(11), 3500–3507 (2007).
    [CrossRef] [PubMed]

2013 (1)

S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun.4, 2289 (2013), doi:.
[CrossRef] [PubMed]

2012 (2)

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

A. Laskin and V. Laskin, “Imaging techniques with refractive beam shaping optics,” Proc. SPIE8490, 84900J, 84900J-11 (2012), doi:.
[CrossRef]

2010 (1)

2009 (2)

2007 (2)

2004 (1)

M. Gerber and T. Graf, “Generation of super-Gaussian modes in Nd:YAG lasers with a graded-phase mirror,” IEEE J. Quantum Electron.40(6), 741–746 (2004).
[CrossRef]

2003 (1)

2001 (1)

2000 (1)

1998 (1)

1996 (1)

1994 (2)

1992 (1)

1991 (1)

Ait-Ameur, K.

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

A. Hasnaoui and K. Ait-Ameur, “Properties of a laser cavity containing an absorbing ring,” Appl. Opt.49(21), 4034–4043 (2010).
[CrossRef] [PubMed]

Arrizón, V.

Bélanger, P. A.

Burger, L.

S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun.4, 2289 (2013), doi:.
[CrossRef] [PubMed]

Cagniot, E.

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

Caley, A. J.

Carrada, R.

Chen, D.

Cherezova, T. Y.

Chesnokov, S. S.

Dai, K.

Dainty, J. C.

Forbes, A.

S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun.4, 2289 (2013), doi:.
[CrossRef] [PubMed]

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

I. A. Litvin and A. Forbes, “Intra-cavity flat-top beam generation,” Opt. Express17(18), 15891–15903 (2009).
[CrossRef] [PubMed]

I. A. Litvin and A. Forbes, “Gaussian mode selection with intracavity diffractive optics,” Opt. Lett.34(19), 2991–2993 (2009).
[CrossRef] [PubMed]

Fromager, M.

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

Gerber, M.

M. Gerber and T. Graf, “Generation of super-Gaussian modes in Nd:YAG lasers with a graded-phase mirror,” IEEE J. Quantum Electron.40(6), 741–746 (2004).
[CrossRef]

Godin, T.

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

González, L. A.

Graf, T.

M. Gerber and T. Graf, “Generation of super-Gaussian modes in Nd:YAG lasers with a graded-phase mirror,” IEEE J. Quantum Electron.40(6), 741–746 (2004).
[CrossRef]

Hasnaoui, A.

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

A. Hasnaoui and K. Ait-Ameur, “Properties of a laser cavity containing an absorbing ring,” Appl. Opt.49(21), 4034–4043 (2010).
[CrossRef] [PubMed]

Hoffnagle, J. A.

Jefferson, C. M.

Kaptsov, L. N.

Koryabin, A. V.

Kudryashov, A. V.

Lachance, R. L.

Laskin, A.

A. Laskin and V. Laskin, “Imaging techniques with refractive beam shaping optics,” Proc. SPIE8490, 84900J, 84900J-11 (2012), doi:.
[CrossRef]

Laskin, V.

A. Laskin and V. Laskin, “Imaging techniques with refractive beam shaping optics,” Proc. SPIE8490, 84900J, 84900J-11 (2012), doi:.
[CrossRef]

Leger, J. R.

Litvin, I. A.

Liu, J.

Ngcobo, S.

S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun.4, 2289 (2013), doi:.
[CrossRef] [PubMed]

Paré, C.

Ruiz, U.

Samarkin, V. V.

Taghizadeh, M. R.

Thomson, M. J.

Waddie, A. J.

Wang, Z.

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

M. Gerber and T. Graf, “Generation of super-Gaussian modes in Nd:YAG lasers with a graded-phase mirror,” IEEE J. Quantum Electron.40(6), 741–746 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun.4, 2289 (2013), doi:.
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Hasnaoui, T. Godin, E. Cagniot, M. Fromager, A. Forbes, and K. Ait-Ameur, “Selection of a LGp0-shaped fundamental mode in a laser cavity: phase versus amplitude masks,” Opt. Commun.285(24), 5268–5275 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Proc. SPIE (1)

A. Laskin and V. Laskin, “Imaging techniques with refractive beam shaping optics,” Proc. SPIE8490, 84900J, 84900J-11 (2012), doi:.
[CrossRef]

Other (2)

F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (Taylor and Francis, 2006).

F. M. Dickey and S. C. Holswade, Laser Beam Shaping, Theory and Techniques (Marcel Dekker, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic representation of the concept. An absorbing ring (2) is placed at the plano (1) end of a plano-concave cavity. A standard circular aperture (3) is placed at the opposite end, and the mode is transmitted through the output coupler (4).

Fig. 2
Fig. 2

(a) Single pass losses for radial Laguerre-Gaussian modes through an aperture, (b) Single pass losses for radial Laguerre-Gaussian modes through an opaque ring, (c) Predicted modal spectrum of radial (p) modes for Ya = 1.55 and Yc = 2.5, and (d) Predicted output modes from the cavity in the far field showing a quasi-Gaussian (Yc = 2) and flat top beam (Yc = 2.5). The simulations were performed with a normalised ring radius of Ya = 1.55 and a ring width of h = 20 µm. The parameters of the cavity were selected to match the experiment, namely, R = 500 mm and L = 252 mm for g ~0.5 at a wavelength of λ = 1064 nm.

Fig. 3
Fig. 3

(a) Schematic setup of an intra-cavity SLM with diagnostic and control equipment. The High Reflectors (HR) were used to reflect the 808 nm or 1064 nm wavelengths. (b) SLM phase screen acted as a flat-end mirror containing an opaque ring of 100 μm width.

Fig. 4
Fig. 4

Experimentally obtained near field and far field images of the Gaussian beam and Flat-top beam for ring width settings of (a-b): 20 μm and (c-d): 100 μm. Gaussian beam (a and a*) and Flat-top beam (b and b*) for Ya = 1.4, a ring width of 20 μm, and Yc = 2.0 (Gaussian) and 2.3 (FT). Gaussian beam (c and c*) and Flat-top beam (d and d*) for Ya = 1.4, a ring width of 100 μm, and Yc = 2.0 (Gaussian), 2.3 (FT). These values are in good agreement with theory.

Fig. 5
Fig. 5

The slope efficiencies of the FT beam, quasi Gaussian beam and Gaussian beam for (a) 20 μm and (b) 100 μm ring width.

Metrics