Abstract

We present a laser Doppler velocimeter (LDV) in monostatic coaxial arrangement consisting of off-the-shelf telecom-grade components: a single frequency laser (wavelength λ = 1.5 μm) and a high-finesse scanning Fabry-Perot interferometer (sFPI). In contrast to previous 1.5 μm LDV systems based on heterodyne detection, our sFPI-LDV has the advantages of having large remote sensing range not limited by laser coherence, high velocity dynamic range not limited by detector bandwidth and inherent sign discrimination of Doppler shift. The more optically efficient coaxial arrangement where transmitter and receiver optics share a common axis reduces the number of components and greatly simplifies the optical alignment. However, the sensitivity to unwanted backreflections is increased. To circumvent this problem, we employ a custom optical circulator design which compared to commercial fiber-optic circulator achieves ~40 dB reduction in strength of unwanted reflections (i.e. leakage) while maintaining high optical efficiency. Experiments with a solid target demonstrate the performance of the sFPI-LDV system with high sensitivity down to pW level at present update rates up to 10 Hz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol.17(7), R71–R91 (2006).
    [CrossRef]
  2. T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol.23(3), 032001 (2012).
    [CrossRef]
  3. N. A. Halliwell, “Laser vibrometry,” in Optical Methods in Engineering Metrology, D. C. Williams, ed. (Chapman and Hall, 1993) pp. 179–211.
  4. M. S. Stieglmeier and C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt.31(21), 4096–4105 (1992).
    [CrossRef] [PubMed]
  5. W. T. Buttler and S. K. Lamoreaux, “Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector,” Appl. Opt.49(23), 4427–4433 (2010).
    [CrossRef] [PubMed]
  6. C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
    [CrossRef]
  7. H. W. Mocker and P. E. Bjork, “High accuracy laser Doppler velocimeter using stable long-wavelength semiconductor lasers,” Appl. Opt.28(22), 4914–4919 (1989).
    [CrossRef] [PubMed]
  8. M. Harris, G. Constant, and C. Ward, “Continuous-Wave Bistatic Laser Doppler Wind Sensor,” Appl. Opt.40(9), 1501–1506 (2001).
    [CrossRef] [PubMed]
  9. D. A. Jackson and D. M. Paul, “Measurement of hypersonic velocities and turbulences by direct spectral analysis of Doppler shifted laser light,” Phys. Lett. A32(2), 77–78 (1970).
    [CrossRef]
  10. M. Hercher, “The spherical mirror fabry-perot interferometer,” Appl. Opt.7(5), 951–966 (1968).
    [CrossRef] [PubMed]
  11. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
    [CrossRef]
  12. P. J. Rodrigo and C. Pedersen, “Field performance of an all-semiconductor laser coherent Doppler lidar,” Opt. Lett.37(12), 2277–2279 (2012).
    [CrossRef] [PubMed]
  13. J. Cooper and J. R. Greig, “Rapid scanning of spectral line profiles using an oscillating Fabry-Pérot interferometer,” J. Sci. Instrum.40(9), 433–437 (1963).
    [CrossRef]

2012 (2)

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol.23(3), 032001 (2012).
[CrossRef]

P. J. Rodrigo and C. Pedersen, “Field performance of an all-semiconductor laser coherent Doppler lidar,” Opt. Lett.37(12), 2277–2279 (2012).
[CrossRef] [PubMed]

2010 (1)

2006 (1)

J. W. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol.17(7), R71–R91 (2006).
[CrossRef]

2001 (1)

1998 (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
[CrossRef]

1992 (1)

1989 (1)

1988 (1)

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

1970 (1)

D. A. Jackson and D. M. Paul, “Measurement of hypersonic velocities and turbulences by direct spectral analysis of Doppler shifted laser light,” Phys. Lett. A32(2), 77–78 (1970).
[CrossRef]

1968 (1)

1963 (1)

J. Cooper and J. R. Greig, “Rapid scanning of spectral line profiles using an oscillating Fabry-Pérot interferometer,” J. Sci. Instrum.40(9), 433–437 (1963).
[CrossRef]

Bjork, P. E.

Buttler, W. T.

Charrett, T. O. H.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol.23(3), 032001 (2012).
[CrossRef]

Chau, H. H.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Constant, G.

Cooper, J.

J. Cooper and J. R. Greig, “Rapid scanning of spectral line profiles using an oscillating Fabry-Pérot interferometer,” J. Sci. Instrum.40(9), 433–437 (1963).
[CrossRef]

Czarske, J. W.

J. W. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol.17(7), R71–R91 (2006).
[CrossRef]

Goosman, D. R.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Greig, J. R.

J. Cooper and J. R. Greig, “Rapid scanning of spectral line profiles using an oscillating Fabry-Pérot interferometer,” J. Sci. Instrum.40(9), 433–437 (1963).
[CrossRef]

Harris, M.

M. Harris, G. Constant, and C. Ward, “Continuous-Wave Bistatic Laser Doppler Wind Sensor,” Appl. Opt.40(9), 1501–1506 (2001).
[CrossRef] [PubMed]

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
[CrossRef]

Hercher, M.

Huen, T.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Jackson, D. A.

D. A. Jackson and D. M. Paul, “Measurement of hypersonic velocities and turbulences by direct spectral analysis of Doppler shifted laser light,” Phys. Lett. A32(2), 77–78 (1970).
[CrossRef]

James, S. W.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol.23(3), 032001 (2012).
[CrossRef]

Karlsson, C. J.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
[CrossRef]

Lamoreaux, S. K.

Letalick, D.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
[CrossRef]

McMillan, C. F.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Mocker, H. W.

Parker, N. L.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Paul, D. M.

D. A. Jackson and D. M. Paul, “Measurement of hypersonic velocities and turbulences by direct spectral analysis of Doppler shifted laser light,” Phys. Lett. A32(2), 77–78 (1970).
[CrossRef]

Pearson, G. N.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
[CrossRef]

Pedersen, C.

Perry, S. J.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Rodrigo, P. J.

Steinmetz, L. L.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Stieglmeier, M. S.

Tatam, R. P.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol.23(3), 032001 (2012).
[CrossRef]

Tropea, C.

Vaughan, J. M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
[CrossRef]

Ward, C.

Whipkey, R. K.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Appl. Opt. (5)

J. Mod. Opt. (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt.45(8), 1567–1581 (1998).
[CrossRef]

J. Sci. Instrum. (1)

J. Cooper and J. R. Greig, “Rapid scanning of spectral line profiles using an oscillating Fabry-Pérot interferometer,” J. Sci. Instrum.40(9), 433–437 (1963).
[CrossRef]

Meas. Sci. Technol. (2)

J. W. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol.17(7), R71–R91 (2006).
[CrossRef]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol.23(3), 032001 (2012).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

D. A. Jackson and D. M. Paul, “Measurement of hypersonic velocities and turbulences by direct spectral analysis of Doppler shifted laser light,” Phys. Lett. A32(2), 77–78 (1970).
[CrossRef]

Rev. Sci. Instrum. (1)

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry-Perot interferometry,” Rev. Sci. Instrum.59(1), 1–21 (1988).
[CrossRef]

Other (1)

N. A. Halliwell, “Laser vibrometry,” in Optical Methods in Engineering Metrology, D. C. Williams, ed. (Chapman and Hall, 1993) pp. 179–211.

Supplementary Material (1)

» Media 1: AVI (6609 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Typical relationship between output detector voltage Vdet and ramp voltage Vramp applied to the piezo-driven mirror of the sFPI. (b) Addition of an appropriate constant voltage Voffset to Vramp allows for positioning of a laser reference resonance peak at the center of the scan. (c) Simultaneous measurement of center frequencies of the laser reference and target backscattered signal results in determination of both magnitude and sign of the Doppler shift fD.

Fig. 2
Fig. 2

Experimental setups used to test the performance of the proposed monostatic coaxial sFPI-LDV: (a) using standard fiber-optic circulator (embodiment #1) and (b) using our custom circulator (embodiment #2). TFP, thin-film polarizer; p-pol, p-polarized beam; s-pol, s-polarized beam; L1, f = 200 mm lens; L2, f = 15.8 mm lens; L3, f = 11.31 mm lens.

Fig. 3
Fig. 3

sFPI output detector voltage Vdet for a linear ramp voltage Vramp scanning slightly more than a full FSR. One full FSR = 1 GHz corresponds to a measured time interval of 1.81 s. Using the measurement data points comprising the first resonance peak, a Lorentzian fit (red curve of inset) results in a full-width-at-half-maximum of 2.67 ms. This gives a measured sFPI bandwidth ΔfFPI = 1.5 MHz.

Fig. 4
Fig. 4

(Media 1) sFPI detector output voltage versus time for a 100-ms scan period defined by the period of the trigger voltage (same as period of the piezo linear ramp voltage).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f D = 1 π k v = 2 λ v LOS ,
FSR= c 4nd ,
Δ f FPI = c 4nd ( 1R ) π R = FSR F ,
P s min = NEP B T rec T FPI ,
P r < P sat /( T rec T FPI ).

Metrics