Abstract

In this paper, we propose a two-tiered colorless WDM-OFDMA PON system architecture that draws strengths from each individual WDM and OFDM PON systems. Specifically, the two-tiered architecture enables a colorless transceiver to be shared by a group of ONUs, resulting in drastic reduction of the system cost. For achieving colorlessness via reusing downstream light sources, we discover the residual power of downstream signal unexpectedly springs back after transmissions, causing severe interference to the upstream signal, and thus limiting the data rate of the upstream signal. We devise a method of adopting a common dispersion compensation module at OLT to reduce the residual power over all wavelengths. Experimental results show that, with an improvement of upstream signal’s SNR up to 10dB, the system successfully achieves 20-Gb/s bidirectional OFDM-signal transmissions on the same wavelength over a 20-km SMF.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm.28(6), 791–799 (2010).
    [CrossRef]
  2. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009).
    [CrossRef]
  3. C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
    [CrossRef]
  4. J. H. Lee, K.-M. Choi, J.-H. Moon, and C.-H. Lee, “Seamless upgrades from a TDM-PON with a video overlay to a WDM-PON,” J. Lightwave Technol.27(15), 3116–3123 (2009).
    [CrossRef]
  5. S.-G. Mun, H.-S. Cho, and C.-H. Lee, “A Cost-Effective WDM-PON Using a Multiple Section Fabry–Pérot Laser Diode,” IEEE Photon. Technol. Lett.23, 3–5 (2011).
  6. M. C. Yuang, P.-L. Tien, D.-Z. Hsu, S.-Y. Chen, C.-C. Wei, J.-L. Shih, and J. Chen, “A high-performance OFDMA PON system architecture and medium access control,” J. Lightwave Technol.30(11), 1685–1693 (2012).
    [CrossRef]
  7. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express19(18), 17546–17556 (2011).
    [CrossRef] [PubMed]
  8. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  9. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express18(10), 9791–9808 (2010).
    [CrossRef] [PubMed]
  10. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
    [CrossRef]
  11. L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
    [CrossRef]
  12. K. Hoon, K. Sangho, H. Seongtaek, and O. Yunje, “Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers,” J. Lightwave Technol.24(2), 775–785 (2006).
    [CrossRef]
  13. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol.23(8), 2399–2409 (2005).
    [CrossRef]
  14. S. H. Cho, S. S. Lee, and D. W. Shin, “Transmission performance enhancement for EIN limited 2.5 Gbit/s RSOA-based WDM-PON by using dispersion management,” Electron. Lett.46(9), 636–638 (2010).
    [CrossRef]

2012 (2)

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

M. C. Yuang, P.-L. Tien, D.-Z. Hsu, S.-Y. Chen, C.-C. Wei, J.-L. Shih, and J. Chen, “A high-performance OFDMA PON system architecture and medium access control,” J. Lightwave Technol.30(11), 1685–1693 (2012).
[CrossRef]

2011 (3)

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express19(18), 17546–17556 (2011).
[CrossRef] [PubMed]

S.-G. Mun, H.-S. Cho, and C.-H. Lee, “A Cost-Effective WDM-PON Using a Multiple Section Fabry–Pérot Laser Diode,” IEEE Photon. Technol. Lett.23, 3–5 (2011).

L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

2010 (4)

S. H. Cho, S. S. Lee, and D. W. Shin, “Transmission performance enhancement for EIN limited 2.5 Gbit/s RSOA-based WDM-PON by using dispersion management,” Electron. Lett.46(9), 636–638 (2010).
[CrossRef]

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm.28(6), 791–799 (2010).
[CrossRef]

B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express18(3), 2137–2143 (2010).
[CrossRef] [PubMed]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express18(10), 9791–9808 (2010).
[CrossRef] [PubMed]

2009 (2)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009).
[CrossRef]

J. H. Lee, K.-M. Choi, J.-H. Moon, and C.-H. Lee, “Seamless upgrades from a TDM-PON with a video overlay to a WDM-PON,” J. Lightwave Technol.27(15), 3116–3123 (2009).
[CrossRef]

2008 (1)

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

2006 (1)

2005 (1)

Chang, G.-K.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chen, H.-Y.

Chen, J.

Chen, L.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chen, S.-Y.

Chia-Chien, W.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Chih-Hung, H.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Cho, H.-S.

S.-G. Mun, H.-S. Cho, and C.-H. Lee, “A Cost-Effective WDM-PON Using a Multiple Section Fabry–Pérot Laser Diode,” IEEE Photon. Technol. Lett.23, 3–5 (2011).

Cho, S. H.

S. H. Cho, S. S. Lee, and D. W. Shin, “Transmission performance enhancement for EIN limited 2.5 Gbit/s RSOA-based WDM-PON by using dispersion management,” Electron. Lett.46(9), 636–638 (2010).
[CrossRef]

Choi, K.-M.

Chun-Ju, L.

L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

Cvijetic, N.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009).
[CrossRef]

Dar-Zu, H.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Giddings, R. P.

Gong-Cheng, L.

L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

Gong-Ru, L.

L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

Hoon, K.

Horak, P.

Hsing-Yu, C.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Hsu, D.-Z.

Hu, J.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009).
[CrossRef]

Huang, M.-F.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Hugues-Salas, E.

Ibsen, M.

Jin, X. Q.

Ju-Lin, S.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Jyehong, C.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Lee, C.-H.

S.-G. Mun, H.-S. Cho, and C.-H. Lee, “A Cost-Effective WDM-PON Using a Multiple Section Fabry–Pérot Laser Diode,” IEEE Photon. Technol. Lett.23, 3–5 (2011).

J. H. Lee, K.-M. Choi, J.-H. Moon, and C.-H. Lee, “Seamless upgrades from a TDM-PON with a video overlay to a WDM-PON,” J. Lightwave Technol.27(15), 3116–3123 (2009).
[CrossRef]

Lee, J. H.

Lee, S. S.

S. H. Cho, S. S. Lee, and D. W. Shin, “Transmission performance enhancement for EIN limited 2.5 Gbit/s RSOA-based WDM-PON by using dispersion management,” Electron. Lett.46(9), 636–638 (2010).
[CrossRef]

Lee, S. S. W.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Li, W.-Y.

Lin, Y.-M.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm.28(6), 791–799 (2010).
[CrossRef]

Liu, B.

Mansoor, S.

McCoy, A. D.

Moon, J.-H.

Mun, S.-G.

S.-G. Mun, H.-S. Cho, and C.-H. Lee, “A Cost-Effective WDM-PON Using a Multiple Section Fabry–Pérot Laser Diode,” IEEE Photon. Technol. Lett.23, 3–5 (2011).

Po-Lung, T.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Richardson, D. J.

Sangho, K.

Seongtaek, H.

Shih, J.-L.

Shih-Hsuan, L.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Shin, D. W.

S. H. Cho, S. S. Lee, and D. W. Shin, “Transmission performance enhancement for EIN limited 2.5 Gbit/s RSOA-based WDM-PON by using dispersion management,” Electron. Lett.46(9), 636–638 (2010).
[CrossRef]

Tang, J. M.

Thomsen, B. C.

Tien, P.-L.

M. C. Yuang, P.-L. Tien, D.-Z. Hsu, S.-Y. Chen, C.-C. Wei, J.-L. Shih, and J. Chen, “A high-performance OFDMA PON system architecture and medium access control,” J. Lightwave Technol.30(11), 1685–1693 (2012).
[CrossRef]

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm.28(6), 791–799 (2010).
[CrossRef]

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009).
[CrossRef]

Wei, C.-C.

Wei, J. L.

Wei-Yuan, L.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Xin, X.

Yi-Hung, L.

L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

Yu, C.

Yu, J.

B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express18(3), 2137–2143 (2010).
[CrossRef] [PubMed]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Yuang, M. C.

M. C. Yuang, P.-L. Tien, D.-Z. Hsu, S.-Y. Chen, C.-C. Wei, J.-L. Shih, and J. Chen, “A high-performance OFDMA PON system architecture and medium access control,” J. Lightwave Technol.30(11), 1685–1693 (2012).
[CrossRef]

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Yu-Chieh, C.

L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

Yu-Min, L.

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Yunje, O.

Zhang, L.

Zhang, Q.

Zheng, X.

Electron. Lett. (1)

S. H. Cho, S. S. Lee, and D. W. Shin, “Transmission performance enhancement for EIN limited 2.5 Gbit/s RSOA-based WDM-PON by using dispersion management,” Electron. Lett.46(9), 636–638 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Gong-Ru, L. Yi-Hung, L. Chun-Ju, C. Yu-Chieh, and L. Gong-Cheng, “Reusing a Data-Erased ASE Carrier in a Weak-Resonant-Cavity Laser Diode for Noise-Suppressed Error-Free Transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm.28(6), 791–799 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett.21(17), 1265–1267 (2009).
[CrossRef]

C. Hsing-Yu, W. Chia-Chien, H. Dar-Zu, M. C. Yuang, C. Jyehong, L. Yu-Min, T. Po-Lung, S. S. W. Lee, L. Shih-Hsuan, L. Wei-Yuan, H. Chih-Hung, and S. Ju-Lin, “A 40-Gb/s OFDM PON System Based on 10-GHz EAM and 10-GHz Direct-Detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

S.-G. Mun, H.-S. Cho, and C.-H. Lee, “A Cost-Effective WDM-PON Using a Multiple Section Fabry–Pérot Laser Diode,” IEEE Photon. Technol. Lett.23, 3–5 (2011).

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Architecture of the two-tiered colorless WDM-OFDMA PON system.

Fig. 2
Fig. 2

Experimental setup of point-to-point downstream and upstream transmission, and the spectra of the downstream signals (a) before the SOA, (b) after the SOA, (c) after a 20-km SMF transmission, and (d) after the DCM and the pre-amplifier.

Fig. 3
Fig. 3

The optical spectra of (a) the optical carrier without modulation, and (b) the modulated optical carrier, before and after the SOA.

Fig. 4
Fig. 4

SNR performances of (a) the downstream signal, and (b) the upstream signal.

Fig. 5
Fig. 5

Constellations of the (a) downstream signal, and (b) upstream signal, corresponding to the cases in Fig. 4, at the received power of −12 dBm.

Fig. 6
Fig. 6

The BER curve of the downstream and upstream OFDM signals after a 20-km fiber transmission.

Metrics