Abstract

The suitability of a terahertz plasmonic sensor for sensing applications is successfully demonstrated using a hybrid planar waveguide composed of a subwavelength plastic ribbon waveguide and a diffraction metal grating. The subwavelength-confined terahertz plasmons on the hybrid waveguide resonantly reflect from the periodic metal structure under phase-matched conditions and perform resonant transmission dips. The resonant plasmonic frequencies are found to be strongly dependent on the refractive indices and thicknesses of analytes laid on the hybrid planar waveguide. Both plastic films with varying thicknesses and granular analytes in different quantities are successfully identified according to the spectral shifts of resonant dips. An optimal refractive index sensitivity of 261 GHz per refractive index unit is achieved. Within localized and enhanced terahertz plasmonic fields, the minimum detectable optical path difference can be reduced to 2.7 μm corresponding to λ/289, and the minimum detectable amount of analytes in powdered form reaches 17.3 nano-mole/mm2. The sensing technique can be used to detect particles in a chemical reaction or monitor pollutants.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
    [CrossRef]
  2. T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochem. Biophys. Res. Commun.414(1), 192–198 (2011).
    [CrossRef] [PubMed]
  3. M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter18(18), S601–S618 (2006).
    [CrossRef]
  4. B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express20(6), 5858–5866 (2012).
    [CrossRef] [PubMed]
  5. C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
    [CrossRef]
  6. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett.93(24), 241115 (2008).
    [CrossRef]
  7. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett.87(24), 241119 (2005).
    [CrossRef]
  8. T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012).
    [CrossRef]
  9. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
    [CrossRef]
  10. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  11. S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009).
    [CrossRef]
  12. A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33(4), 348–350 (2008).
    [CrossRef] [PubMed]
  13. P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
    [CrossRef]
  14. M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010).
    [CrossRef]
  15. D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013).
    [PubMed]
  16. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
    [CrossRef] [PubMed]
  17. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuators B54, 3–15 (1999).
  18. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
    [CrossRef]
  19. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008).
    [CrossRef] [PubMed]
  20. C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
    [CrossRef]
  21. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009).
    [CrossRef] [PubMed]
  22. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
    [CrossRef] [PubMed]
  23. F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys.99(1), 016105 (2006).
    [CrossRef]
  24. J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
    [CrossRef]
  25. M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
    [CrossRef]
  26. F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett.96(2), 021106 (2010).
    [CrossRef]
  27. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008).
    [CrossRef]
  28. L. Shen, X. Chen, and T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008).
    [CrossRef] [PubMed]
  29. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
    [CrossRef]
  30. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18(18), 19353–19360 (2010).
    [CrossRef] [PubMed]
  31. R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 645162 (2009).
    [CrossRef]
  32. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett.31(14), 2118–2120 (2006).
    [CrossRef] [PubMed]
  33. B. You, J.-Y. Lu, W.-L. Chang, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Subwavelength confined terahertz waves on planar waveguides using metallic gratings,” Opt. Express21(5), 6009–6019 (2013).
    [CrossRef] [PubMed]
  34. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
    [CrossRef]
  35. B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
    [CrossRef]
  36. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
    [CrossRef]
  37. G. Liu, M. He, Z. Tian, J. Li, and J. Liu, “Terahertz surface plasmon sensor for distinguishing gasolines,” Appl. Opt.52(23), 5695–5700 (2013).
    [CrossRef] [PubMed]

2013 (4)

D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013).
[PubMed]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
[CrossRef] [PubMed]

B. You, J.-Y. Lu, W.-L. Chang, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Subwavelength confined terahertz waves on planar waveguides using metallic gratings,” Opt. Express21(5), 6009–6019 (2013).
[CrossRef] [PubMed]

G. Liu, M. He, Z. Tian, J. Li, and J. Liu, “Terahertz surface plasmon sensor for distinguishing gasolines,” Appl. Opt.52(23), 5695–5700 (2013).
[CrossRef] [PubMed]

2012 (2)

B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express20(6), 5858–5866 (2012).
[CrossRef] [PubMed]

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012).
[CrossRef]

2011 (2)

T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochem. Biophys. Res. Commun.414(1), 192–198 (2011).
[CrossRef] [PubMed]

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

2010 (5)

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett.96(2), 021106 (2010).
[CrossRef]

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010).
[CrossRef]

B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18(18), 19353–19360 (2010).
[CrossRef] [PubMed]

2009 (4)

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 645162 (2009).
[CrossRef]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

2008 (7)

A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33(4), 348–350 (2008).
[CrossRef] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008).
[CrossRef] [PubMed]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett.93(24), 241115 (2008).
[CrossRef]

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008).
[CrossRef]

L. Shen, X. Chen, and T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008).
[CrossRef] [PubMed]

2007 (4)

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
[CrossRef]

2006 (4)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter18(18), S601–S618 (2006).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett.31(14), 2118–2120 (2006).
[CrossRef] [PubMed]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys.99(1), 016105 (2006).
[CrossRef]

2005 (2)

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett.87(24), 241119 (2005).
[CrossRef]

2000 (1)

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuators B54, 3–15 (1999).

1996 (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
[CrossRef]

Agarwal, K.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008).
[CrossRef]

Agrawal, A.

Andrews, S. R.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Astley, V.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Azad, A. K.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
[CrossRef]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett.93(24), 241115 (2008).
[CrossRef]

Beigang, R.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010).
[CrossRef]

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

Bingham, A. L.

A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33(4), 348–350 (2008).
[CrossRef] [PubMed]

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
[CrossRef]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

Bosserhoff, A.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Brener, I.

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Büttner, R.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Carretero-Palacios, S.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

Chang, W.-L.

Chen, H.-Z.

Chen, X.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008).
[CrossRef]

L. Shen, X. Chen, and T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008).
[CrossRef] [PubMed]

Citrin, D. S.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett.87(24), 241119 (2005).
[CrossRef]

Colombelli, R.

D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013).
[PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

Degiron, A.

D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013).
[PubMed]

Fernandez-Dominguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Fernández-Domínguez, A. I.

Forst, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter18(18), S601–S618 (2006).
[CrossRef]

Gacemi, D.

D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013).
[PubMed]

Garcia-Vidal, F. J.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

García-Vidal, F. J.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuators B54, 3–15 (1999).

George, P. A.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
[CrossRef]

Gong, M.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
[CrossRef]

Grischkowsky, D.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010).
[CrossRef]

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33(4), 348–350 (2008).
[CrossRef] [PubMed]

Grischkowsky, D. R.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
[CrossRef]

Han, J.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
[CrossRef]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys.99(1), 016105 (2006).
[CrossRef]

Haring Bolivar, P.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Harsha, S. S.

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009).
[CrossRef]

Hasebe, T.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012).
[CrossRef]

T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochem. Biophys. Res. Commun.414(1), 192–198 (2011).
[CrossRef] [PubMed]

Hayashi, A.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

Hayashi, S.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

He, M.

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett.93(24), 241115 (2008).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuators B54, 3–15 (1999).

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett.93(24), 241115 (2008).
[CrossRef]

Kashyap, R.

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 645162 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett.31(14), 2118–2120 (2006).
[CrossRef] [PubMed]

Kato, E.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Kawabe, S.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012).
[CrossRef]

Kawai, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

Kawase, K.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Kurt, H.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett.87(24), 241119 (2005).
[CrossRef]

Kurz, H.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter18(18), S601–S618 (2006).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Lakhtakia, A.

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
[CrossRef] [PubMed]

Laman, N.

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009).
[CrossRef]

Lamb, J. W.

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
[CrossRef]

Li, J.

Liang, H. W.

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

Liou, J.-H.

Liu, G.

Liu, J.

G. Liu, M. He, Z. Tian, J. Li, and J. Liu, “Terahertz surface plasmon sensor for distinguishing gasolines,” Appl. Opt.52(23), 5695–5700 (2013).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Lu, X.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
[CrossRef]

Maier, S. A.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Mangeney, J.

D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013).
[PubMed]

Manolatou, C.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
[CrossRef]

Martin-Moreno, L.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Martín-Moreno, L.

Matsui, H.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012).
[CrossRef]

Mendis, R.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Misra, M.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

Mittleman, D. M.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Miyamaru, F.

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett.96(2), 021106 (2010).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys.99(1), 016105 (2006).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Moreno, E.

Nagel, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter18(18), S601–S618 (2006).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

Nahata, A.

Nemova, G.

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 645162 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett.31(14), 2118–2120 (2006).
[CrossRef] [PubMed]

Nerkararyan, Kh.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

O’Hara, J. F.

Ogawa, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Otani, C.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Pan, C.-L.

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

Peng, J.-L.

Pulsifer, D. P.

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
[CrossRef] [PubMed]

Qiu, M. X.

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

Rana, F.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
[CrossRef]

Rau, C.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

Rodrigo, S. G.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

Ruan, S. C.

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

Sasagawa, Y.

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett.96(2), 021106 (2010).
[CrossRef]

Shen, L.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008).
[CrossRef]

L. Shen, X. Chen, and T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008).
[CrossRef] [PubMed]

Singh, R.

Smirnova, E.

Su, H.

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

Swiontek, S. E.

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
[CrossRef] [PubMed]

Tabata, H.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012).
[CrossRef]

T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochem. Biophys. Res. Commun.414(1), 192–198 (2011).
[CrossRef] [PubMed]

Takeda, M. W.

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett.96(2), 021106 (2010).
[CrossRef]

Taylor, A. J.

Theuer, M.

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010).
[CrossRef]

Tian, Z.

Torosyan, G.

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

Wang, C. D.

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

Wang, R. L.

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

Williams, C. R.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Yamada, Y.

T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochem. Biophys. Res. Commun.414(1), 192–198 (2011).
[CrossRef] [PubMed]

Yang, T.-J.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuators B54, 3–15 (1999).

Yoshida, H.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett.31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

You, B.

Yu, C.-P.

Zhang, M.

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

Zhang, W.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
[CrossRef]

Zhong, Y.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008).
[CrossRef]

Zhu, W.

Appl. Opt. (1)

Appl. Phys. Lett. (15)

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett.77(24), 4049–4051 (2000).
[CrossRef]

C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005).
[CrossRef]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett.93(24), 241115 (2008).
[CrossRef]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett.87(24), 241119 (2005).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007).
[CrossRef]

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009).
[CrossRef]

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett.91(19), 191122 (2007).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two cylinder waveguide sensor,” Appl. Phys. Lett.97(7), 071106 (2010).
[CrossRef]

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett.91(7), 071122 (2007).
[CrossRef]

M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, “Enhanced transmission of THz radiation through sub-wavelength, asymmetry metallic hole arrays,” Appl. Phys. Lett.99(15), 151501 (2011).
[CrossRef]

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett.96(2), 021106 (2010).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007).
[CrossRef]

B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochem. Biophys. Res. Commun.414(1), 192–198 (2011).
[CrossRef] [PubMed]

Int. J. Infrared Millim. Waves (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
[CrossRef]

J. Appl. Phys. (2)

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys.99(1), 016105 (2006).
[CrossRef]

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys.112(9), 094702 (2012).
[CrossRef]

J. Phys. Condens. Matter (1)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter18(18), S601–S618 (2006).
[CrossRef]

J. Sens. (1)

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 645162 (2009).
[CrossRef]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. B (1)

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B77(7), 075408 (2008).
[CrossRef]

Sci. Rep. (2)

D. Gacemi, J. Mangeney, R. Colombelli, and A. Degiron, “Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves,” Sci. Rep.3, 1369 (2013).
[PubMed]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
[CrossRef] [PubMed]

Sensor Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuators B54, 3–15 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Sensing configuration of a hybrid THz planar plasmonic waveguide; (b) Phase-matching diagram of THz-SPW resonance.

Fig. 2
Fig. 2

Transmission spectra of the blank PE ribbon and hybrid waveguide.

Fig. 3
Fig. 3

(a) Transmission spectrum of THz-SPWs at various input angles relative to the metal grating structure; (b) Measured and calculated Bragg resonance frequency of THz-SPW at input angles varying from 0 degree to 30 degrees.

Fig. 4
Fig. 4

(a) Transmission power spectrum for various PE films with different thicknesses attached to the metal grating surface; Corresponding (b) resonant frequencies, (c) effective waveguide indices, and (d) occupied power ratios inside the film with varying PE film thicknesses.

Fig. 5
Fig. 5

(a) Decay lengths of the 4th-order resonant THz-SPW for attaching various thicknesses of PE films. (inset) Illustration of the decay lengths of THz-SPWs apart from the metal grating surface and across a PE-film; (b) Decay lengths of guided THz-SPWs for attaching various thicknesses of PE films.

Fig. 6
Fig. 6

(a) Transmission spectrum for sensing powder analytes adsorbed on a PE film substrate; (inset) Refractive index spectrum of a tablet-formed compound Bi2CuISe3; (b) Relation between the spectral shift of the 4th-order SPW resonance and variation of effective waveguide index compared with the blank hybrid waveguide condition.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν=| mC 2 n eff Λcos(ϕ) |.

Metrics