Abstract

We report a substantial increase in PMD tolerance in a single-channel ultrahigh-speed transmission using optical Nyquist pulses. We demonstrate both analytically and experimentally a large reduction in depolarization-induced crosstalk with optical Nyquist pulses, which is one of the major obstacles facing polarization-multiplexed ultrashort pulse transmission. By taking advantage of the high PMD tolerance, a low-penalty 1.28 Tbit/s/ch optical Nyquist TDM transmission at 640 Gbaud was achieved over 525 km.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.  Nakazawa, T.  Yamamoto, K. R.  Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
    [CrossRef]
  2. H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
    [CrossRef]
  3. H. C. H.  Mulvad, M.  Galili, L. K.  Oxenløwe, H.  Hu, A. T.  Clausen, J. B.  Jensen, C.  Peucheret, P.  Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [CrossRef] [PubMed]
  4. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference (OFC 2011), paper PDPA9.
  5. P.  Guan, T.  Hirano, K.  Harako, Y.  Tomiyama, T.  Hirooka, M.  Nakazawa, “2.56 Tbit/s/ch polarization-multiplexed DQPSK transmission over 300 km using time-domain optical Fourier transformation,” Opt. Express 19(26), B567–B573 (2011).
    [CrossRef] [PubMed]
  6. T.  Hirooka, K.  Harako, P.  Guan, M.  Nakazawa, “Second-order PMD-induced crosstalk between polarization-multiplexed signals and its impact on ultrashort optical pulse transmission,” J. Lightwave Technol. 31(5), 809–814 (2013).
    [CrossRef]
  7. M.  Nakazawa, T.  Hirooka, P.  Ruan, P.  Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [CrossRef] [PubMed]
  8. H.  Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).
  9. T.  Hirooka, P.  Ruan, P.  Guan, M.  Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
    [CrossRef] [PubMed]
  10. H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. Hansen Mulvad, P. Jeppesen, and L. K. Oxenløwe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference (OFC 2013), paper J2WA.61.
    [CrossRef]
  11. H. N. Tan, T. Inoue, and S. Namiki, “Pass-drop operations of 4x172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference (OFC 2013), paper J2WA.50.
  12. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Conference on Lasers and Electro-Optics (CLEO 2013), paper CTh5D.5.
    [CrossRef]
  13. K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference (OFC 2013), paper J2WA.38.
    [CrossRef]
  14. K. Harako, T. Hirooka, and M. Nakazawa, “Marked reduction of depolarization-induced crosstalk in ultrahigh-speed Pol-MUX transmission with an optical Nyquist pulse,” in Opto-Electronics and Communication Conference (OECC 2013), paper WR4–5

2013

2012

2011

2010

2006

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

2000

M.  Nakazawa, T.  Yamamoto, K. R.  Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

1928

H.  Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).

Boerner, C.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Clausen, A. T.

Ferber, S.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Futami, F.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Galili, M.

Guan, P.

Harako, K.

Hirano, T.

Hirooka, T.

Hu, H.

Jensen, J. B.

Jeppesen, P.

Kroh, M.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Ludwig, R.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Marembert, V.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Mulvad, H. C. H.

Nakazawa, M.

Nyquist, H.

H.  Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).

Oxenløwe, L. K.

Peucheret, C.

Ruan, P.

Schmidt-Langhorst, C.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Schubert, C.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Tamura, K. R.

M.  Nakazawa, T.  Yamamoto, K. R.  Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

Tomiyama, Y.

Watanabe, S.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Weber, H. G.

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Yamamoto, T.

M.  Nakazawa, T.  Yamamoto, K. R.  Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

Electron. Lett.

M.  Nakazawa, T.  Yamamoto, K. R.  Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

H. G.  Weber, S.  Ferber, M.  Kroh, C.  Schmidt-Langhorst, R.  Ludwig, V.  Marembert, C.  Boerner, F.  Futami, S.  Watanabe, C.  Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Trans. Am. Inst. Electr. Eng.

H.  Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).

Other

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference (OFC 2011), paper PDPA9.

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. Hansen Mulvad, P. Jeppesen, and L. K. Oxenløwe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference (OFC 2013), paper J2WA.61.
[CrossRef]

H. N. Tan, T. Inoue, and S. Namiki, “Pass-drop operations of 4x172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference (OFC 2013), paper J2WA.50.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Conference on Lasers and Electro-Optics (CLEO 2013), paper CTh5D.5.
[CrossRef]

K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference (OFC 2013), paper J2WA.38.
[CrossRef]

K. Harako, T. Hirooka, and M. Nakazawa, “Marked reduction of depolarization-induced crosstalk in ultrahigh-speed Pol-MUX transmission with an optical Nyquist pulse,” in Opto-Electronics and Communication Conference (OECC 2013), paper WR4–5

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Comparison of Gaussian and Nyquist pulse waveforms (a) and spectra (b) for 640 Gbaud transmission.

Fig. 2
Fig. 2

Experimental setup for inter-polarization crosstalk measurement.

Fig. 3
Fig. 3

(a) Optical spectrum of 40 GHz Gaussian pulse with SPM-induced spectral broadening, and (b) the transfer function to shape it into a Nyquist pulse (T = 1.56 ps, α = 0.5). (c) and (d): optical spectrum and waveform of a generated optical Nyquist pulse.

Fig. 4
Fig. 4

Maximum DOP values for Gaussian and Nyquist pulses measured at various propagation lengths.

Fig. 5
Fig. 5

Optical spectra of signal and crosstalk components when a Nyquist (a) and Gaussian (b) pulse were propagated over 75, 150, 300, and 525 km.

Fig. 6
Fig. 6

Dependence of inter-polarization crosstalk on the fiber length measured for a 600 fs Gaussian pulse and an optical Nyquist pulse (T = 1.56 ps, α = 0.5). The dots are the experimental data, and the curves are their L2 fitting.

Fig. 7
Fig. 7

Dependence of depolarization-induced crosstalk on spectral width, measured at 75 km. The dots are the experimental data, and the red curve is the analytical result given by Eqs. (4) and (5).

Fig. 8
Fig. 8

Dependence of depolarization-induced crosstalk on roll-factor α for Nyquist pulses for 640 Gbaud transmission, measured at 75 km. The dots are the experimental data, and the red curve is the analytical result given by Eq. (5).

Fig. 9
Fig. 9

Experimental setup for 1.28 Tbit/s/ch Nyquist pulse OTDM transmission over 525 km. Abbreviations are defined in the text.

Fig. 10
Fig. 10

Waveform of a 640 Gbaud Nyquist OTDM signal before transmission.

Fig. 11
Fig. 11

Transmitted optical Nyquist pulse waveforms. (a) Before dispersion slope compensation, and (b) after dispersion slope compensation.

Fig. 12
Fig. 12

Transmitted optical Nyquist pulse spectrum and waveform. (a) Before spectral reshaping on the receiver side, and (b) after spectral reshaping on the receiver side.

Fig. 13
Fig. 13

Optimization of NOLM switching gate for 640 Gbaud Nyquist OTDM demultiplexing. (a) BER vs. control pulse width. (b) The switching gate window under optimum condition. (c) a 40 Gbaud waveform demultiplexed from a 640 Gbaud Nyquist OTDM signal.

Fig. 14
Fig. 14

Optical spectra of signal (red) and crosstalk components (blue) after 525 km propagation (left) and polarization- and OTDM-demultiplexed 40 Gbaud signal waveform (right). (a) SOP optimization with a maximized DOP around the center frequency, and (b) SOP optimization with a maximized DOP over the entire bandwidth.

Fig. 15
Fig. 15

BER characteristics for 640 Gbaud Nyquist (a) and Gaussian (b) pulse transmission over 525 km. Blue curves show the BER for 640 Gbit/s single-polarization transmission, and red curves show the result of a 1.28 Tbit/s polarization-multiplexed transmission. The circles and squares correspond to the two polarization channels.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r(t)= sin(πt/T) πt/T cos(απt/T) 1 (2αt/T) 2 ,R(f)={ T,0|f| 1α 2T T 2 { 1sin[ π 2α (2T|f|1) ] }, 1α 2T |f| 1+α 2T 0,|f| 1+α 2T ,
I BA (ω)= Δ ω 4 16 | B ˜ (ω) | 2 | dn dω ( ω 0 )Δτ( ω 0 ) | 2
η= I BA (ω)dω | B ˜ (ω) | 2 dω = 1 16 | dn dω ( ω 0 )Δτ( ω 0 ) | 2 (ω ω 0 ) 4 | B ˜ (ω) | 2 dω | B ˜ (ω) | 2 dω .
η Gauss = 3 64 Ω 0 4 | dn dω ( ω 0 )Δτ( ω 0 ) | 2 ,
η Nyquist = 4 π 4 T 4 (4α) | dn dω ( ω 0 )Δτ( ω 0 ) | 2 [ ( 1 16 π 2 3 8 π 4 1 320 ) α 5 +( 24 π 4 3 π 2 + 1 16 ) α 4 +( 3 16 π 2 1 32 ) α 3 +( 1 π 2 + 1 8 ) α 2 α 64 + 1 80 ].
η sinc = π 4 20 T 4 | dn dω ( ω 0 )Δτ( ω 0 ) | 2 .

Metrics