Abstract

Division-of-focal plane (DoFP) imaging polarimeters are useful instruments for measuring polarization information for a variety of applications. Recent advances in nanofabrication have enabled the practical manufacture of DoFP sensors for the visible spectrum. These sensors are made by integrating nanowire polarization filters directly with an imaging array, and size variations of the nanowires due to fabrication can cause the optical properties of the filters to vary up to 20% across the imaging array. If left unchecked, these variations introduce significant errors when reconstructing the polarization image. Calibration methods offer a means to correct these errors. This work evaluates a scalar and matrix calibration derived from a mathematical model of the polarimeter behavior. The methods are evaluated quantitatively with an existing DoFP polarimeter under varying illumination intensity and angle of linear polarization.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Goldstein, Polarized light, 3rd ed. (CRC Press, Boca Raton, FL, 2011), pp. xxi, 770 p.
  2. J. S.  Tyo, D. L.  Goldstein, D. B.  Chenault, J. A.  Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  3. S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind Haze Separation,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006), 1984–1991.
    [CrossRef]
  4. T.  Treibitz, Y. Y.  Schechner, “Active Polarization Descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
    [CrossRef] [PubMed]
  5. J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
    [CrossRef]
  6. E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009).
    [CrossRef]
  7. D. H.  Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45(30), 7944–7950 (2006).
    [CrossRef] [PubMed]
  8. P.  Brady, M.  Cummings, “Differential Response to Circularly Polarized Light by the Jewel Scarab Beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
    [CrossRef] [PubMed]
  9. T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
    [CrossRef] [PubMed]
  10. N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000).
    [CrossRef] [PubMed]
  11. A.  Sweeney, C.  Jiggins, S.  Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
    [CrossRef] [PubMed]
  12. G. Horváth and D. Varjú, Polarized light in animal vision: polarization patterns in nature (Springer, 2004).
  13. C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995).
    [CrossRef] [PubMed]
  14. P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991).
    [CrossRef] [PubMed]
  15. E.  Salomatina-Motts, V.  Neel, A.  Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
    [CrossRef]
  16. M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
    [CrossRef]
  17. Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
    [CrossRef] [PubMed]
  18. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer, 2006).
  19. R.  Walraven, “Polarization imagery,” Opt. Eng. 20(1), 200114 (1981).
    [CrossRef]
  20. J. E.  Solomon, “Polarization imaging,” Appl. Opt. 20(9), 1537–1544 (1981).
    [CrossRef] [PubMed]
  21. R. M.  Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
    [CrossRef] [PubMed]
  22. C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Proc. SPIE, 2002), 118–125.
  23. J. D. Barter, P. H. Lee, H. Thompson, Jr., and T. Schneider, “Stokes parameter imaging of scattering surfaces,” in Optical Science, Engineering and Instrumentation'97, (International Society for Optics and Photonics, 1997), 314–320.
  24. M. W.  Kudenov, J. L.  Pezzaniti, G. R.  Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009).
  25. C. K.  Harnett, H. G.  Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002).
    [CrossRef] [PubMed]
  26. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), 169–177.
    [CrossRef]
  27. M.  Sarkar, D.  San Segundo Bello, C.  Van Hoof, A.  Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
    [CrossRef]
  28. J. S.  Tyo, “Hybrid division of aperture/division of a focal-plane polarimeter for real-time polarization imagery without an instantaneous field-of-view error,” Opt. Lett. 31(20), 2984–2986 (2006).
    [CrossRef] [PubMed]
  29. M.  Momeni, A. H.  Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
    [CrossRef] [PubMed]
  30. T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
    [CrossRef]
  31. V.  Gruev, J.  Van der Spiegel, N.  Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
    [CrossRef] [PubMed]
  32. V.  Gruev, R.  Perkins, T.  York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [CrossRef] [PubMed]
  33. R.  Perkins, V.  Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010).
    [CrossRef] [PubMed]
  34. M.  Kulkarni, V.  Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
    [CrossRef] [PubMed]
  35. G.  Myhre, W.-L.  Hsu, A.  Peinado, C.  LaCasse, N.  Brock, R. A.  Chipman, S.  Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
    [CrossRef] [PubMed]
  36. J. S.  Tyo, C. F.  LaCasse, B. M.  Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
    [CrossRef] [PubMed]
  37. S.  Gao, V.  Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
    [CrossRef] [PubMed]
  38. X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012).
    [CrossRef]
  39. A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
    [CrossRef]
  40. V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” Circuits and Systems I: Regular Papers, IEEE Transactions on 57, 1154–1165 (2010).
    [CrossRef]
  41. V.  Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19(24), 24361–24369 (2011).
    [CrossRef] [PubMed]
  42. J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
  43. M. A.  Jensen, G. P.  Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17(12), 2191–2198 (2000).
    [CrossRef] [PubMed]
  44. T.  York, V.  Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
    [CrossRef] [PubMed]
  45. “KAI-2020 Image Sensor Device Performance Specification,” (Eastman Kodak Company, 2010).

2012

Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
[CrossRef] [PubMed]

X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012).
[CrossRef]

T.  York, V.  Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
[CrossRef] [PubMed]

M.  Kulkarni, V.  Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[CrossRef] [PubMed]

G.  Myhre, W.-L.  Hsu, A.  Peinado, C.  LaCasse, N.  Brock, R. A.  Chipman, S.  Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
[CrossRef] [PubMed]

2011

2010

2009

T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

J. S.  Tyo, C. F.  LaCasse, B. M.  Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
[CrossRef] [PubMed]

E.  Salomatina-Motts, V.  Neel, A.  Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

T.  Treibitz, Y. Y.  Schechner, “Active Polarization Descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009).
[CrossRef]

M. W.  Kudenov, J. L.  Pezzaniti, G. R.  Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009).

2008

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

2007

J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).

2006

2003

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

A.  Sweeney, C.  Jiggins, S.  Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

2002

2001

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

2000

N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000).
[CrossRef] [PubMed]

M. A.  Jensen, G. P.  Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17(12), 2191–2198 (2000).
[CrossRef] [PubMed]

1998

A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[CrossRef]

1995

C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995).
[CrossRef] [PubMed]

1991

P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991).
[CrossRef] [PubMed]

1985

1981

J. E.  Solomon, “Polarization imaging,” Appl. Opt. 20(9), 1537–1544 (1981).
[CrossRef] [PubMed]

R.  Walraven, “Polarization imagery,” Opt. Eng. 20(1), 200114 (1981).
[CrossRef]

Achilefu, S.

Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
[CrossRef] [PubMed]

Akers, W.

Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
[CrossRef] [PubMed]

Anastasiadou, M.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Azzam, R. M.

Boal, J. G.

N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000).
[CrossRef] [PubMed]

Boyce, R.

C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995).
[CrossRef] [PubMed]

Brady, P.

P.  Brady, M.  Cummings, “Differential Response to Circularly Polarized Light by the Jewel Scarab Beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
[CrossRef] [PubMed]

Bréon, F. M.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Brock, N.

Caldwell, R. L.

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

Canham, P. B.

P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991).
[CrossRef] [PubMed]

Chenault, D. B.

Cheroske, A. G.

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

Chiou, T.-H.

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

Chipman, R. A.

Clement, D.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Cohen, H.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Craighead, H. G.

Cronin, T. W.

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

Cummings, M.

P.  Brady, M.  Cummings, “Differential Response to Circularly Polarized Light by the Jewel Scarab Beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
[CrossRef] [PubMed]

Deng, X.

J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).

Deuzé, J. L.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Devaux, C.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Dixon, J. G.

P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991).
[CrossRef] [PubMed]

Dreyfuss, J.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

El Gamal, A.

A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[CrossRef]

Engheta, N.

Eriksen, E.

C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995).
[CrossRef] [PubMed]

Ferguson, S. E.

P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991).
[CrossRef] [PubMed]

Finlay, H. M.

P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991).
[CrossRef] [PubMed]

Fowler, B. A.

A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[CrossRef]

Gao, S.

Gerhart, G. R.

M. W.  Kudenov, J. L.  Pezzaniti, G. R.  Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009).

Goldstein, D. H.

Goldstein, D. L.

Goloub, P.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Gruev, V.

M.  Kulkarni, V.  Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[CrossRef] [PubMed]

X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012).
[CrossRef]

Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
[CrossRef] [PubMed]

T.  York, V.  Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
[CrossRef] [PubMed]

V.  Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19(24), 24361–24369 (2011).
[CrossRef] [PubMed]

S.  Gao, V.  Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
[CrossRef] [PubMed]

V.  Gruev, R.  Perkins, T.  York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[CrossRef] [PubMed]

R.  Perkins, V.  Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010).
[CrossRef] [PubMed]

V.  Gruev, J.  Van der Spiegel, N.  Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
[CrossRef] [PubMed]

Hagan, R.

N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000).
[CrossRef] [PubMed]

Hakala, T.

E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Hanlon, R. T.

N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000).
[CrossRef] [PubMed]

Harnett, C. K.

Herman, M.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Hsu, W.-L.

Huynh, B.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Jensen, M. A.

Jiggins, C.

A.  Sweeney, C.  Jiggins, S.  Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

Johnsen, S.

A.  Sweeney, C.  Jiggins, S.  Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

Kudenov, M. W.

M. W.  Kudenov, J. L.  Pezzaniti, G. R.  Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009).

Kulkarni, M.

X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012).
[CrossRef]

M.  Kulkarni, V.  Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[CrossRef] [PubMed]

LaCasse, C.

LaCasse, C. F.

Lafrance, B.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Laude-Boulesteix, B.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Liège, F.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Liu, X.

J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).

A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[CrossRef]

Liu, Y.

Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
[CrossRef] [PubMed]

Maignan, F.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Marchand, A.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Marshall, J.

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

Martino, A. D.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Min, H.

A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[CrossRef]

Momeni, M.

M.  Momeni, A. H.  Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

Myhre, G.

Nadal, F.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Nazac, A.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Neel, V.

E.  Salomatina-Motts, V.  Neel, A.  Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

Nehorai, A.

X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012).
[CrossRef]

Nordin, G. P.

Ohta, J.

T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Paddock, C.

C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995).
[CrossRef] [PubMed]

Pau, S.

Peinado, A.

Peltoniemi, J.

E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Perkins, R.

Perry, G.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Pezzaniti, J. L.

M. W.  Kudenov, J. L.  Pezzaniti, G. R.  Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009).

Puttonen, E.

E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Quang, N.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Ratliff, B. M.

Salomatina-Motts, E.

E.  Salomatina-Motts, V.  Neel, A.  Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

San Segundo Bello, D.

M.  Sarkar, D.  San Segundo Bello, C.  Van Hoof, A.  Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[CrossRef]

Sarkar, M.

M.  Sarkar, D.  San Segundo Bello, C.  Van Hoof, A.  Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[CrossRef]

Sasagawa, K.

T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Sato, S.

T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Schechner, Y. Y.

T.  Treibitz, Y. Y.  Schechner, “Active Polarization Descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

Schwartz, L.

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Sciortino, P.

J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).

Shashar, N.

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000).
[CrossRef] [PubMed]

Shaw, J. A.

Solomon, J. E.

Sudlow, G.

Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
[CrossRef] [PubMed]

Suomalainen, J.

E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Sweeney, A.

A.  Sweeney, C.  Jiggins, S.  Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

Tanré, D.

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

Theuwissen, A.

M.  Sarkar, D.  San Segundo Bello, C.  Van Hoof, A.  Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[CrossRef]

Titus, A. H.

M.  Momeni, A. H.  Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

Tokuda, T.

T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Treibitz, T.

T.  Treibitz, Y. Y.  Schechner, “Active Polarization Descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

Tyo, J. S.

Van der Spiegel, J.

Van Hoof, C.

M.  Sarkar, D.  San Segundo Bello, C.  Van Hoof, A.  Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[CrossRef]

Walraven, R.

R.  Walraven, “Polarization imagery,” Opt. Eng. 20(1), 200114 (1981).
[CrossRef]

Walters, F.

J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).

Wang, J. J.

J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).

Xu, X.

X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012).
[CrossRef]

Yamada, H.

T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Yaroslavskaya, A.

E.  Salomatina-Motts, V.  Neel, A.  Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

York, T.

Youngs, T.

C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995).
[CrossRef] [PubMed]

Am. Nat.

P.  Brady, M.  Cummings, “Differential Response to Circularly Polarized Light by the Jewel Scarab Beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
[CrossRef] [PubMed]

Anat. Rec.

P. B.  Canham, H. M.  Finlay, J. G.  Dixon, S. E.  Ferguson, “Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy,” Anat. Rec. 231(4), 579–592 (1991).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

J. J.  Wang, F.  Walters, X.  Liu, P.  Sciortino, X.  Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).

Bone

C.  Paddock, T.  Youngs, E.  Eriksen, R.  Boyce, “Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: correlation with erosion depth estimates obtained by lamellar counting,” Bone 16(3), 381–383 (1995).
[CrossRef] [PubMed]

Electron. Lett.

T.  Tokuda, S.  Sato, H.  Yamada, K.  Sasagawa, J.  Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

IEEE Sens. J.

M.  Sarkar, D.  San Segundo Bello, C.  Van Hoof, A.  Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

E.  Puttonen, J.  Suomalainen, T.  Hakala, J.  Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Remote Sens. 47(7), 2330–2339 (2009).
[CrossRef]

IEEE Trans. Neural Netw.

M.  Momeni, A. H.  Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

T.  Treibitz, Y. Y.  Schechner, “Active Polarization Descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

Integr. Comp. Biol.

T. W.  Cronin, N.  Shashar, R. L.  Caldwell, J.  Marshall, A. G.  Cheroske, T.-H.  Chiou, “Polarization Vision and Its Role in Biological Signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt.

Y.  Liu, T.  York, W.  Akers, G.  Sudlow, V.  Gruev, S.  Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt. 17(11), 116001 (2012).
[CrossRef] [PubMed]

J. Geophys. Res., D, Atmospheres

J. L.  Deuzé, F. M.  Bréon, C.  Devaux, P.  Goloub, M.  Herman, B.  Lafrance, F.  Maignan, A.  Marchand, F.  Nadal, G.  Perry, D.  Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res., D, Atmospheres 106(D5), 4913–4926 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Nature

A.  Sweeney, C.  Jiggins, S.  Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

Opt. Eng.

R.  Walraven, “Polarization imagery,” Opt. Eng. 20(1), 200114 (1981).
[CrossRef]

M. W.  Kudenov, J. L.  Pezzaniti, G. R.  Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009).

Opt. Express

Opt. Lett.

Opt. Spectrosc.

E.  Salomatina-Motts, V.  Neel, A.  Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

Phys. Status Solidi

M.  Anastasiadou, A. D.  Martino, D.  Clement, F.  Liège, B.  Laude‐Boulesteix, N.  Quang, J.  Dreyfuss, B.  Huynh, A.  Nazac, L.  Schwartz, H.  Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Proc. SPIE

X.  Xu, M.  Kulkarni, A.  Nehorai, V.  Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE 8364, 83640L–83640L (2012).
[CrossRef]

A.  El Gamal, B. A.  Fowler, H.  Min, X.  Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[CrossRef]

Vision Res.

N.  Shashar, R.  Hagan, J. G.  Boal, R. T.  Hanlon, “Cuttlefish use polarization sensitivity in predation on silvery fish,” Vision Res. 40(1), 71–75 (2000).
[CrossRef] [PubMed]

Other

G. Horváth and D. Varjú, Polarized light in animal vision: polarization patterns in nature (Springer, 2004).

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer, 2006).

D. H. Goldstein, Polarized light, 3rd ed. (CRC Press, Boca Raton, FL, 2011), pp. xxi, 770 p.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), 169–177.
[CrossRef]

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Proc. SPIE, 2002), 118–125.

J. D. Barter, P. H. Lee, H. Thompson, Jr., and T. Schneider, “Stokes parameter imaging of scattering surfaces,” in Optical Science, Engineering and Instrumentation'97, (International Society for Optics and Photonics, 1997), 314–320.

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind Haze Separation,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006), 1984–1991.
[CrossRef]

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” Circuits and Systems I: Regular Papers, IEEE Transactions on 57, 1154–1165 (2010).
[CrossRef]

“KAI-2020 Image Sensor Device Performance Specification,” (Eastman Kodak Company, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Block diagram of a division of focal plane polarimeter. An array of pixel pitch-matched polarization filters are deposited on the surface of a CMOS or CCD imaging array.

Fig. 2
Fig. 2

Apparatus for evaluating calibration techniques.

Fig. 3
Fig. 3

Histogram of pixel dark offsets. The digital value range for each pixel in the polarimeter is between 0 and 4095.

Fig. 4
Fig. 4

Analysis vectors for all pixels in the imaging array. Diamonds indicate corresponding ideal values for each colored group—red is 0°, blue is 45°, green is 90° and purple is 135°. The ratios of A2/A0 versus A1/A0 for each pixel are presented in the left sub-plot, where the radius corresponds to a filter’s diattenuation and the polar angle corresponds to its orientation. The corresponding values of A0, which represent the filters’ transmission coefficients along the x-axis, are plotted in the right sub-plot.

Fig. 5
Fig. 5

Pixel analysis vectors corrected with the single-pixel calibration method. The lengths of the analysis vectors have been normalized to the ideal ones, but the directions have not been corrected. The variation in transmission between all pixels in the imaging array is ~2%.

Fig. 6
Fig. 6

Pixel analysis vectors corrected with the super-pixel calibration method. The analysis vectors are transformed completely to the ideal analysis vectors. The variation in transmission between all pixels in the imaging array is less than 0.1%.

Fig. 7
Fig. 7

Pixel responses with white light at 100% intensity level and linearly polarized at 15°. Left: The response of the 0°-oriented pixels with and without calibration. Right: The response of all pixels in the imaging array without calibration.

Fig. 8
Fig. 8

Pixel responses with white light at 100% intensity level and linearly polarized at 15°. Left: The response of all pixels in the imaging array after single-pixel-calibration. Right: The response of all pixels in the imaging array after super-pixel-calibration.

Fig. 9
Fig. 9

Pixel responses with white light, 100% intensity, linearly polarized at angle θ . Left: uncalibrated. Right: Single-pixel calibrated. Error bars are at ± 1 standard deviation.

Fig. 10
Fig. 10

Super-pixel calibrated response with white light, 100% intensity, linearly polarized at angle θ . Error bars are at ± 1 standard deviation.

Fig. 11
Fig. 11

RMS error of the reconstructed intensity of the incident light, i.e. S 0 parameter, as a function of the (left) incident polarization angle, θ , and (right) intensity.

Fig. 12
Fig. 12

RMS error of the reconstructed DoLP as polarization angle, θ , and intensity, S 0 , vary.

Fig. 13
Fig. 13

RMS error of the reconstructed polarization angle, θ , as θ and intensity, S 0 , vary.

Fig. 14
Fig. 14

RMS error of the reconstructed intensity, S0, as the incident intensity on the imaging sensor is varied for three different wavelengths. Left sub-plot presents the RMS error for the single pixel calibration method and the right sub-plot presents the RMS error for the super-pixel calibration method.

Fig. 15
Fig. 15

Real life images obtained from a division of focal plane polarimeter. The first column of images present intensity, S0, the second column of images present the degree of linear polarization and the third column presents the angle of polarization. Uncalibrated images are presented in the first row; single-pixel calibration images are presented in the second row and super-pixel calibration images are presented in the third row.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

S f = M f S in .
M f = 1 2 ( ( p x 2 + p y 2 ) ( p x 2 p y 2 ) c 2θ ( p x 2 p y 2 ) s 2θ 0 ( p x 2 p y 2 ) c 2θ ( p x 2 + p y 2 ) c 2θ 2 +2 p x p y s 2θ 2 1 2 ( p x p y ) 2 s 4θ 0 ( p x 2 p y 2 ) s 2θ 1 2 ( p x p y ) 2 s 4θ 2 p x p y c 2θ 2 +( p x 2 + p y 2 ) s 2θ 2 0 0 0 0 2 p x p y ).
I p =g( 1 0 0 0 ) S f +d=g( 1 0 0 0 ) M f S in +d= A f S in +d.
I sp =( A f,1 S in + d 1 A f,n S in + d n )=( A f,1 A f,n ) S in +( d 1 d n )=A S in + d .
min Ca l p Ca l p ( I p ) I p,ideal 2 ;
min Ca l sp Ca l sp ( I sp ) I sp,ideal 2 .
I p,ideal = A ideal S in ;
I sp,ideal = A ideal S in .
Ca l p ( I p )= g c ( I p d c );
Ca l sp ( I sp )= G c ( I sp d c ).
min g c , d c g c ( A f S in +d d c ) A ideal S in 2 ;
min G c , d c G c ( A S in + d d c ) A ideal S in 2 .
d c =d, g c = A ideal S in A f S in .
d c =d, g c = A ideal A f .
Ca l p ( I p )= g c ( I p d c )= A ideal A f ( A f S in +dd )= A ideal A f A f S in I p,ideal .
d c = d , G c = A ideal A + .
Ca l sp ( I sp )= G c ( I sp d c )= A ideal A + ( A S in + d d )= A ideal S in = I sp,ideal .
( I 1 I m )=( A f d )( S in,1 1 S in,m 1 );
( A f d )=( I 1 I m ) ( S in,1 1 S in,m 1 ) + .

Metrics