Abstract

In the present work, we report on the investigation of the third-order nonlinear optical response of graphene fluoride dispersed in DMF and also of fluorosurfactant-stabilized graphene fluoride dispersed in water under visible (532nm) and infrared (1064nm), picosecond and nanosecond laser excitation. Both graphene derivatives were found to exhibit large nonlinear optical response, while significant differences on their nonlinear optical response have been observed (e.g. different sign of nonlinear refraction and absorption). These findings highlight the important role of the degree of fluorination of the graphene sheets on their optical and electronic properties. Furthermore, DMF dispersed graphene fluoride was found to exhibit important broadband optical limiting action under nanosecond laser excitation, making it promising candidate for optical limiting applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
    [CrossRef]
  2. E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
    [CrossRef]
  3. F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).
  4. G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004).
    [CrossRef]
  5. Y. P.  Sun, J. E.  Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
    [CrossRef]
  6. V.  Yong, J. M.  Tour, “Theoretical efficiency of nanostructured graphene-based photovoltaics,” Small 6(2), 313–318 (2010).
    [CrossRef] [PubMed]
  7. J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
    [CrossRef]
  8. K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  9. F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]
  10. K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [CrossRef] [PubMed]
  11. T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
    [CrossRef]
  12. Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
    [CrossRef]
  13. R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
    [CrossRef] [PubMed]
  14. O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
    [CrossRef]
  15. A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
    [CrossRef]
  16. A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
    [CrossRef]
  17. A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012).
    [CrossRef]
  18. M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  19. Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
    [CrossRef]
  20. D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
    [CrossRef]
  21. N.  Venkatram, R.  Sathyavathi, D. N.  Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15(19), 12258–12263 (2007).
    [CrossRef] [PubMed]
  22. M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
    [CrossRef] [PubMed]
  23. M. G.  Murali, U.  Dalimba, K.  Sridharan, “Synthesis, characterization, and nonlinear optical properties of donor-acceptor conjugated polymers and polymer/Ag nanocomposites,” J. Mater. Sci. 47(23), 8022–8034 (2012).
    [CrossRef]
  24. N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
    [CrossRef]
  25. R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
    [CrossRef] [PubMed]
  26. G.  Eda, M.  Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
    [CrossRef] [PubMed]
  27. L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
    [CrossRef]
  28. P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
    [CrossRef]
  29. A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
    [CrossRef]
  30. P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012).
    [CrossRef]
  31. H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
    [CrossRef]
  32. J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
    [CrossRef] [PubMed]
  33. R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
    [CrossRef]
  34. D. N.  Christodoulides, I. C.  Khoo, G. J.  Salamo, G. I.  Stegeman, E. W.  Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010).
    [CrossRef]

2013

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

2012

M. G.  Murali, U.  Dalimba, K.  Sridharan, “Synthesis, characterization, and nonlinear optical properties of donor-acceptor conjugated polymers and polymer/Ag nanocomposites,” J. Mater. Sci. 47(23), 8022–8034 (2012).
[CrossRef]

L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012).
[CrossRef]

H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
[CrossRef]

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012).
[CrossRef]

2010

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
[CrossRef]

V.  Yong, J. M.  Tour, “Theoretical efficiency of nanostructured graphene-based photovoltaics,” Small 6(2), 313–318 (2010).
[CrossRef] [PubMed]

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

G.  Eda, M.  Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

D. N.  Christodoulides, I. C.  Khoo, G. J.  Salamo, G. I.  Stegeman, E. W.  Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010).
[CrossRef]

2009

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[CrossRef]

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

2008

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

2007

N.  Venkatram, R.  Sathyavathi, D. N.  Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15(19), 12258–12263 (2007).
[CrossRef] [PubMed]

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
[CrossRef] [PubMed]

2005

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

2004

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004).
[CrossRef]

2003

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

2002

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

1999

Y. P.  Sun, J. E.  Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

1996

F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).

R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

1990

M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Ajayan, P. M.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

Aloukos, P.

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

Anglos, D.

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Anilkumar, P.

L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
[CrossRef]

Avramopoulos, A.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Badescu, S. C.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Bakandritsos, A.

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

Balakrishnan, K.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

Baldwin, J. W.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Bao, Q.

K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Blau, W. J.

J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[CrossRef]

Bonaccorso, F.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Bose, S.

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

Bourlinos, A. B.

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012).
[CrossRef]

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Burgess, J. S.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Cao, L.

L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
[CrossRef]

Chang, Q.

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Chantharasupawong, P.

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012).
[CrossRef]

Chatzikyriakos, G.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Chen, Y.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Chhowalla, M.

K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

G.  Eda, M.  Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

Christodoulides, D. N.

Chu, K. C.

G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004).
[CrossRef]

Cifuentes, M. P.

M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
[CrossRef] [PubMed]

Cohanoschi, I.

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Coleman, J. N.

J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[CrossRef]

Corrêa, D. S.

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Couris, S.

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Cox, P.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

Culbertson, J. C.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Dalimba, U.

M. G.  Murali, U.  Dalimba, K.  Sridharan, “Synthesis, characterization, and nonlinear optical properties of donor-acceptor conjugated polymers and polymer/Ag nanocomposites,” J. Mater. Sci. 47(23), 8022–8034 (2012).
[CrossRef]

Dalton, G. T.

M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
[CrossRef] [PubMed]

Danieli, R.

F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).

De Boni, L.

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

DeSalvo, R.

R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Detkov, P.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Duan, C. G.

G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004).
[CrossRef]

Dubonos, S. V.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Eda, G.

K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

G.  Eda, M.  Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

Endo, T.

P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012).
[CrossRef]

Ferrari, A. C.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Firsov, A. A.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Furuki, M.

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Galande, C.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

Gao, Y.

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Geim, A. K.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Georgakilas, V.

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Giannelis, E. P.

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Grigorieva, I. V.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Guo, G. Y.

G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004).
[CrossRef]

Hagan, D.

M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Hagan, D. J.

R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Hasan, T.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Hernandez, F. E.

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Hernandez, Y.

J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[CrossRef]

Hernandez-Nieves, A. D.

O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
[CrossRef]

Hou, Z. F.

H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
[CrossRef]

Hu, C. H.

H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
[CrossRef]

Huang, Y.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Humphrey, M. G.

M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
[CrossRef] [PubMed]

Iliopoulos, K.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Iwasa, I.

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Jancik, D.

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Jancík, D.

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Jiang, D.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Jiao, W.

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Junkermeier, C. E.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Karakassides, M. A.

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Karlický, F.

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Kazjar, F.

F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).

Khanra, P.

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

Khoo, I. C.

Kim, N. H.

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

Kokkinaki, O.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Kolokithas-Ntoukas, A.

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

Kong, C. Y.

L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
[CrossRef]

Konstantaki, M.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Korovin, S.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Koudoumas, E.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Kuila, T.

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

Kuznetsov, V.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Lee, J. H.

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

Leenaerts, O.

O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
[CrossRef]

Li, Y.

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Liaros, N.

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

Liu, H.

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Liu, H. Y.

H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
[CrossRef]

Liu, Z.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Loboda, O.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Loh, K. P.

K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Lotya, M.

J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[CrossRef]

Ma, Y.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Mathkar, A.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

Mendonça, C. R.

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Mishra, A. K.

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

Misoguti, L.

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Mitsu, H.

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Morozov, S. V.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Morrall, J. P.

M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
[CrossRef] [PubMed]

Murali, M. G.

M. G.  Murali, U.  Dalimba, K.  Sridharan, “Synthesis, characterization, and nonlinear optical properties of donor-acceptor conjugated polymers and polymer/Ag nanocomposites,” J. Mater. Sci. 47(23), 8022–8034 (2012).
[CrossRef]

Narayanan, N. T.

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

Novoselov, K. S.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Ong, P.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

Otyepka, M.

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Papadopoulos, M. G.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Partoens, B.

O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
[CrossRef]

Peelaers, H.

O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
[CrossRef]

Peeters, F. M.

O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
[CrossRef]

Perkins, F. K.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Philip, R.

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012).
[CrossRef]

Pimenov, S.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Pustovoi, V.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

Rao, D. N.

Reddy, A. L. M.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

Reinecke, T. L.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Riggs, J. E.

Y. P.  Sun, J. E.  Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

Robinson, J. T.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Rossini, S.

F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).

Rotas, G.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Safarova, K.

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012).
[CrossRef]

Šafárová, K.

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Sahu, S.

L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
[CrossRef]

Said, A. A.

R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Salamo, G. J.

Samoc, M.

M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
[CrossRef] [PubMed]

Sathyavathi, R.

Sato, Y.

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Sheehan, P. E.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Sheik-Bahae, M.

R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Siskova, K.

A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012).
[CrossRef]

Snow, E. S.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Song, Y.

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Sridharan, K.

M. G.  Murali, U.  Dalimba, K.  Sridharan, “Synthesis, characterization, and nonlinear optical properties of donor-acceptor conjugated polymers and polymer/Ag nanocomposites,” J. Mater. Sci. 47(23), 8022–8034 (2012).
[CrossRef]

Stassinopoulos, A.

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Stegeman, G. I.

Steriotis, T. A.

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Stubos, A. K.

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Sudeep, P. M.

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

Sun, Y. P.

Y. P.  Sun, J. E.  Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

Sun, Y.-P.

L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
[CrossRef]

Sun, Z.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Szabo, T.

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

Tagmatarchis, N.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Taliani, C.

F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).

Tatsuura, S.

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Thomas, J.

P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

Tian, J.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Tian, M.

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

Tour, J. M.

V.  Yong, J. M.  Tour, “Theoretical efficiency of nanostructured graphene-based photovoltaics,” Small 6(2), 313–318 (2010).
[CrossRef] [PubMed]

Tozier, D.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

Trapalis, C.

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Van Stryland, E. W.

D. N.  Christodoulides, I. C.  Khoo, G. J.  Salamo, G. I.  Stegeman, E. W.  Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010).
[CrossRef]

R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Venkatram, N.

Wang, D. S.

G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004).
[CrossRef]

Wang, J.

J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[CrossRef]

Wang, Y.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Wei, T. H.

M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Xu, Y.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Yang, Y.

H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
[CrossRef]

Yong, V.

V.  Yong, J. M.  Tour, “Theoretical efficiency of nanostructured graphene-based photovoltaics,” Small 6(2), 313–318 (2010).
[CrossRef] [PubMed]

Zalalutdniov, M. K.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Zalesny, R.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Zamboni, R.

F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).

Zboril, R.

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012).
[CrossRef]

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

Zhang, X.

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

Zhang, Y.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zhu, Z. Z.

H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
[CrossRef]

Adv. Mater.

S.  Tatsuura, M.  Furuki, Y.  Sato, I.  Iwasa, M.  Tian, H.  Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[CrossRef]

J.  Wang, Y.  Hernandez, M.  Lotya, J. N.  Coleman, W. J.  Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[CrossRef]

Y.  Xu, Z.  Liu, X.  Zhang, Y.  Wang, J.  Tian, Y.  Huang, Y.  Ma, X.  Zhang, Y.  Chen, “A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009).
[CrossRef]

G.  Eda, M.  Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Angew. Chem. Int. Ed. Engl.

M.  Samoc, J. P.  Morrall, G. T.  Dalton, M. P.  Cifuentes, M. G.  Humphrey, “Two-photon and three-photon absorption in an organometallic dendrimer,” Angew. Chem. Int. Ed. Engl. 46(5), 731–733 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P.  Chantharasupawong, R.  Philip, T.  Endo, J.  Thomas, “Enhanced optical limiting in nanosized mixed zinc ferrites,” Appl. Phys. Lett. 100(22), 221108 (2012).
[CrossRef]

Carbon

A. B.  Bourlinos, K.  Safarova, K.  Siskova, R.  Zbořil, “The production of chemically converted graphenes from graphene fluoride,” Carbon 50(3), 1425–1428 (2012).
[CrossRef]

Chem. Phys. Lett.

E.  Koudoumas, O.  Kokkinaki, M.  Konstantaki, S.  Couris, S.  Korovin, P.  Detkov, V.  Kuznetsov, S.  Pimenov, V.  Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
[CrossRef]

A. B.  Bourlinos, A.  Bakandritsos, N.  Liaros, S.  Couris, K.  Safarova, M.  Otyepka, R.  Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[CrossRef]

IEEE J. Quantum Electron.

R.  DeSalvo, A. A.  Said, D. J.  Hagan, E. W.  Van Stryland, M.  Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

M.  Sheik-Bahae, A. A.  Said, T. H.  Wei, D.  Hagan, E. W.  Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Int. Rev. Phys. Chem.

Y. P.  Sun, J. E.  Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

J. Fluor. Chem.

A. B.  Bourlinos, V.  Georgakilas, R.  Zboril, D.  Jancik, M. A.  Karakassides, A.  Stassinopoulos, D.  Anglos, E. P.  Giannelis, “Reaction of graphite fluoride with NaOH-KOH eutectic,” J. Fluor. Chem. 129(8), 720–724 (2008).
[CrossRef]

J. Mater. Sci.

M. G.  Murali, U.  Dalimba, K.  Sridharan, “Synthesis, characterization, and nonlinear optical properties of donor-acceptor conjugated polymers and polymer/Ag nanocomposites,” J. Mater. Sci. 47(23), 8022–8034 (2012).
[CrossRef]

J. Phys. Chem. C

N.  Liaros, P.  Aloukos, A.  Kolokithas-Ntoukas, A.  Bakandritsos, T.  Szabo, R.  Zboril, S.  Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[CrossRef]

H. Y.  Liu, Z. F.  Hou, C. H.  Hu, Y.  Yang, Z. Z.  Zhu, “Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine,” J. Phys. Chem. C 116(34), 18193–18201 (2012).
[CrossRef]

P.  Chantharasupawong, R.  Philip, N. T.  Narayanan, P. M.  Sudeep, A.  Mathkar, P. M.  Ajayan, J.  Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116(49), 25955–25961 (2012).
[CrossRef]

J. Phys. Chem. Lett.

A.  Mathkar, D.  Tozier, P.  Cox, P.  Ong, C.  Galande, K.  Balakrishnan, A. L. M.  Reddy, P. M.  Ajayan, “Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide,” J. Phys. Chem. Lett. 3(8), 986–991 (2012).
[CrossRef]

MRS Bull.

L.  Cao, S.  Sahu, P.  Anilkumar, C. Y.  Kong, Y.-P.  Sun, “Linear and nonlinear optical properties of modified graphene-based materials,” MRS Bull. 37(12), 1283–1289 (2012).
[CrossRef]

Nano Lett.

J. T.  Robinson, J. S.  Burgess, C. E.  Junkermeier, S. C.  Badescu, T. L.  Reinecke, F. K.  Perkins, M. K.  Zalalutdniov, J. W.  Baldwin, J. C.  Culbertson, P. E.  Sheehan, E. S.  Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 3001–3005 (2010).
[CrossRef] [PubMed]

Nat. Chem.

K. P.  Loh, Q.  Bao, G.  Eda, M.  Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Nat. Photonics

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Opt. Commun.

Y.  Gao, X.  Zhang, Y.  Li, H.  Liu, Y.  Wang, Q.  Chang, W.  Jiao, Y.  Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[CrossRef]

D. S.  Corrêa, L.  De Boni, L.  Misoguti, I.  Cohanoschi, F. E.  Hernandez, C. R.  Mendonça, “Z-scan theoretical analysis for three-, for- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

R.  Zaleśny, O.  Loboda, K.  Iliopoulos, G.  Chatzikyriakos, S.  Couris, G.  Rotas, N.  Tagmatarchis, A.  Avramopoulos, M. G.  Papadopoulos, “Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment,” Phys. Chem. Chem. Phys. 12(2), 373–381 (2009).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter

O.  Leenaerts, H.  Peelaers, A. D.  Hernandez-Nieves, B.  Partoens, F. M.  Peeters, “First principles investigation of graphene fluoride and graphane,” Phys. Rev. B Condens. Matter 82(19), 195436 (2010).
[CrossRef]

G. Y.  Guo, K. C.  Chu, D. S.  Wang, C. G.  Duan, “Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations,” Phys. Rev. B Condens. Matter 69(20), 205416 (2004).
[CrossRef]

Prog. Mater. Sci.

T.  Kuila, S.  Bose, A. K.  Mishra, P.  Khanra, N. H.  Kim, J. H.  Lee, “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci. 57(7), 1061–1105 (2012).
[CrossRef]

Science

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Small

V.  Yong, J. M.  Tour, “Theoretical efficiency of nanostructured graphene-based photovoltaics,” Small 6(2), 313–318 (2010).
[CrossRef] [PubMed]

R.  Zbořil, F.  Karlický, A. B.  Bourlinos, T. A.  Steriotis, A. K.  Stubos, V.  Georgakilas, K.  Šafářová, D.  Jančík, C.  Trapalis, M.  Otyepka, “Graphene Fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small 6(24), 2885–2891 (2010).
[CrossRef] [PubMed]

Synth. Met.

F.  Kazjar, C.  Taliani, R.  Zamboni, S.  Rossini, R.  Danieli, “Nonlinear optical properties of fullerenes,” Synth. Met. 77(1–3), 257–263 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

TEM images of folded (left) and overlapped (right) graphene fluoride nanosheets. The inset depicts a thin sheet with a lateral size of 500 nm.

Fig. 2
Fig. 2

AFM image and height profile of a single graphene fluoride sheet with thickness of 0.6 nm. The white spots are from underlay mica which is partly affected by the DMF solvent.

Fig. 3
Fig. 3

UV-Vis-NIR absorption spectra of a GF dispersion in DMF, an aqueous dispersion of fluorosurfactant stabilized GF and of a GO water suspension for comparison.

Fig. 4
Fig. 4

OA Z-scans of a 1.87mg/ml GF suspension in DMF, obtained under 4ns, 532nm (a-b) and 1064nm (c-d) laser excitation. The solid lines represent the best fit of the experimental data.

Fig. 5
Fig. 5

“Divided” Z-scans of a 1.87mg/ml GF suspension obtained under (a) 4ns, 532nm, and (b) 1064nm laser excitation and (c) a “divided” Z-scan of a 0.5mg/ml fluorosurfactant stabilized GF, obtained under 4ns, 532nm laser excitation.

Fig. 6
Fig. 6

OA Z-scans of a 0.5mg/ml aqueous dispersion of fluorosurfactant stabilized GF sheets obtained under 35ps, 532nm (a) and 1064nm (b) laser excitation.

Fig. 7
Fig. 7

“Divided” Z-scans of (a) a 0.5mg/ml fluorosurfactant stabilized GF and (b) a 1.87mg/ml GF dispersion in DFM obtained under 35ps, 532nm laser excitation. The solid lines represent the best fits of the experimental data.

Fig. 8
Fig. 8

Optical limiting of a 1.87 mg/ml suspension of GF in DMF 532nm (•) and 1064nm (ο), 4ns laser excitation.

Tables (2)

Tables Icon

Table 1 Third-order NLO parameters of GF dispersions in DMF, aqueous dispersions of fluorosurfactant stabilized GF, aqueous dispersions of graphene oxide and a C60 toluene solution under 4ns laser excitation.

Tables Icon

Table 2 Third-order NLO parameters of GF dispersions in DMF, aqueous dispersions of fluorosurfactant stabilized GF, aqueous dispersions of graphene oxide and a C60 toluene solution under 35ps laser excitation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α( I )= α 0 1+I/ I s +βI
dI / d z =α( I )I
Im χ (3) (esu)= c 2 (m/s ) 2 n 0 2 β(m/W ) 960 π 2 ω( s 1 )
γ'= λα 1 e aL Δ Τ pv 0.812π I 0 ( 1S ) 0.25
Re χ ( 3 ) ( esu )= 10 6 c( cm /s ) n 0 2 480 π 2 γ'( c m 2 /W )

Metrics