Abstract

A method to improve the spurious-free dynamic range (SFDR) of analog photonic links has been proposed and experimentally demonstrated, which only consists of a phase modulator (PM), a polarizer and an optical filter. Such structure could compensate for the chromatic dispersion and the nonlinearity of the modulator simultaneously. In addition, by adjusting the states of polarization (SOPs) launching into the PM and the polarizer, the proposed scheme could also be reconfigured to mitigate the second harmonic nonlinearity induced by the photodetector. Experimental results show that the suppressions of the second-order and third-order intermodulation distortions (IMD2 & IMD3) are larger than 14-dB and 25.4-dB, respectively. Furthermore, the SFDR can achieve ~110-dB·Hz4/5 for 40-km fiber transmission, which is 26-dB higher than that of the link without compensation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
    [CrossRef]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  3. Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
    [CrossRef]
  4. A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
    [CrossRef]
  5. G. Q. Zhang, X. P. Zheng, S. Y. Li, H. Y. Zhang, and B. K. Zhou, “Postcompensation for nonlinearity of Mach-Zehnder modulator in radio-over-fiber system based on second-order optical sideband processing,” Opt. Lett.37(5), 806–808 (2012).
    [CrossRef] [PubMed]
  6. E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech.47(12), 2271–2279 (1999).
    [CrossRef]
  7. T. S. Cho and K. Kim, “Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach–Zehnder modulator with ODSB and OSSB signals,” J. Lightwave Technol.24(5), 2052–2058 (2006).
    [CrossRef]
  8. G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech.42(12), 2642–2649 (1994).
    [CrossRef]
  9. S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express19(8), 7865–7871 (2011).
    [CrossRef] [PubMed]
  10. Q. Lv, K. Xu, Y. T. Dai, Y. Li, J. Wu, and J. T. Lin, “I/Q intensity-demodulation analog photonic link based on polarization modulator,” Opt. Lett.36(23), 4602–4604 (2011).
    [CrossRef] [PubMed]
  11. C. Lim, A. Nirmalathas, K.-L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber–radio applications incorporating OSSB+C modulation in an optical integrated-access environment,” J. Lightwave Technol.25(6), 1602–1612 (2007).
    [CrossRef]
  12. B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator,” J. Lightwave Technol.27(15), 3034–3041 (2009).
    [CrossRef]
  13. M. H. Huang, J. B. Fu, and S. L. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett.37(11), 1823–1825 (2012).
    [CrossRef] [PubMed]
  14. T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett.19(16), 1206–1208 (2007).
    [CrossRef]
  15. B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett.19(10), 729–731 (2007).
    [CrossRef]
  16. V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” Trans. Micro. Theo. Tech.55(9), 1978–1985 (2007).
    [CrossRef]
  17. L. M. Johnson and H. V. Roussell, “Reduction intermodulation distortion in interferometric optical modulators,” Opt. Lett.13(10), 928–930 (1988).
    [CrossRef] [PubMed]
  18. A. Ramaswamy, L. A. Johansson, J. Klamkin, H.-F. Chou, C. Sheldon, M. J. Rodwell, L. A. Coldren, and J. E. Bowers, “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightwave Technol.26(1), 209–216 (2008).
    [CrossRef]
  19. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express19(2), 883–895 (2011).
    [CrossRef] [PubMed]
  20. P. Li, L. S. Yan, T. Zhou, W. Li, Z. Y. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett.38(14), 2391–2393 (2013).
    [CrossRef] [PubMed]
  21. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol.29(8), 1182–1205 (2011).
    [CrossRef]
  22. P. S. Devgan, A. S. Hastings, V. J. Urick, and K. J. Williams, “Cancellation of photodiode-induced second harmonic distortion using single side band modulation from a dual parallel Mach-Zehnder,” Opt. Express20(24), 27163–27173 (2012).
    [CrossRef] [PubMed]

2013 (2)

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

P. Li, L. S. Yan, T. Zhou, W. Li, Z. Y. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett.38(14), 2391–2393 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (5)

2009 (2)

2008 (1)

2007 (4)

C. Lim, A. Nirmalathas, K.-L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber–radio applications incorporating OSSB+C modulation in an optical integrated-access environment,” J. Lightwave Technol.25(6), 1602–1612 (2007).
[CrossRef]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett.19(16), 1206–1208 (2007).
[CrossRef]

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett.19(10), 729–731 (2007).
[CrossRef]

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” Trans. Micro. Theo. Tech.55(9), 1978–1985 (2007).
[CrossRef]

2006 (2)

1999 (1)

E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech.47(12), 2271–2279 (1999).
[CrossRef]

1994 (1)

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech.42(12), 2642–2649 (1994).
[CrossRef]

1988 (1)

Ackerman, E. I.

E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech.47(12), 2271–2279 (1999).
[CrossRef]

Agarwal, A.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Banwell, T.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Betts, G. E.

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech.42(12), 2642–2649 (1994).
[CrossRef]

Bowers, J. E.

Bucholtz, F.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol.29(8), 1182–1205 (2011).
[CrossRef]

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” Trans. Micro. Theo. Tech.55(9), 1978–1985 (2007).
[CrossRef]

Campillo, A. L.

Chen, Z. Y.

P. Li, L. S. Yan, T. Zhou, W. Li, Z. Y. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett.38(14), 2391–2393 (2013).
[CrossRef] [PubMed]

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

Cho, T. S.

Chou, H.-F.

Clark, T. R.

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett.19(16), 1206–1208 (2007).
[CrossRef]

Coldren, L. A.

Dai, Y. T.

Dalton, L. R.

Dennis, M. L.

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett.19(16), 1206–1208 (2007).
[CrossRef]

Devgan, P. S.

Dexter, J. L.

Fetterman, H. R.

Fu, J. B.

Guo, Y. H.

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

Haas, B. M.

V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express19(2), 883–895 (2011).
[CrossRef] [PubMed]

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett.19(10), 729–731 (2007).
[CrossRef]

Hastings, A. S.

Hraimel, B.

Huang, M. H.

Jiang, H. Y.

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

Johansson, L. A.

Johnson, L. M.

Kim, K.

Kim, S. K.

Klamkin, J.

Lee, K.-L.

Li, P.

Li, S. Y.

Li, W.

Li, Y.

Lim, C.

Lin, J. T.

Liu, W.

Luo, B.

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

P. Li, L. S. Yan, T. Zhou, W. Li, Z. Y. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett.38(14), 2391–2393 (2013).
[CrossRef] [PubMed]

Lv, Q.

Masella, B.

McKinney, J. D.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol.29(8), 1182–1205 (2011).
[CrossRef]

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” Trans. Micro. Theo. Tech.55(9), 1978–1985 (2007).
[CrossRef]

Murphy, T. E.

V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express19(2), 883–895 (2011).
[CrossRef] [PubMed]

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett.19(10), 729–731 (2007).
[CrossRef]

Nirmalathas, A.

Novak, D.

Pagán, V. R.

Pan, S. L.

Pan, W.

P. Li, L. S. Yan, T. Zhou, W. Li, Z. Y. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett.38(14), 2391–2393 (2013).
[CrossRef] [PubMed]

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

Pei, Q.

Ramaswamy, A.

Rodwell, M. J.

Roussell, H. V.

Seeds, A.

Sheldon, C.

Toliver, P.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Urick, V. J.

Waterhouse, R.

Williams, K. J.

Woodward, T. K.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

Wu, J.

Xu, K.

Yan, L. S.

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

P. Li, L. S. Yan, T. Zhou, W. Li, Z. Y. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett.38(14), 2391–2393 (2013).
[CrossRef] [PubMed]

Yao, J. P.

Ye, J.

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

Zhang, G. Q.

Zhang, H. Y.

Zhang, X.

Zheng, X. P.

Zhou, B. K.

Zhou, T.

Zou, X. H.

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Z. Y. Chen, L. S. Yan, J. Ye, W. Pan, B. Luo, X. H. Zou, Y. H. Guo, and H. Y. Jiang, “Pre-distortion compensation of dispersion in APL based on DSB modulation,” IEEE Photon. Technol. Lett.25(12), 1129–1132 (2013).
[CrossRef]

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett.23(1), 24–26 (2011).
[CrossRef]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photon. Technol. Lett.19(16), 1206–1208 (2007).
[CrossRef]

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett.19(10), 729–731 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech.47(12), 2271–2279 (1999).
[CrossRef]

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech.42(12), 2642–2649 (1994).
[CrossRef]

J. Lightwave Technol. (7)

Opt. Express (3)

Opt. Lett. (5)

Trans. Micro. Theo. Tech. (1)

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” Trans. Micro. Theo. Tech.55(9), 1978–1985 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the proposed APL. PM: phase modulator; DSB: double sideband; OC: optical carrier.

Fig. 2
Fig. 2

(a) Optical spectrum of the laser source. (b) Optical spectrum after the phase modulator and the polarizer. Open triangles in green and closed squares in pink show the sidebands at fRF1 and fRF2, respectively. (c) Electrical spectrum after fiber transmission. (d) Optical spectrum after the filter. (e) Electrical spectrum for the proposed link. Inserts in (c) and (e) are the corresponding frequency responses. LD: laser; PM: phase modulator; Pol.: polarizer; PD: photodetector; Fil.: optical filter.

Fig. 3
Fig. 3

Experimental setup for the proposed APL. PC: polarization controller; PM: phase modulator; EDFA: erbium-doped fiber amplifier; SMF: single-mode fiber; VNA: vector network analyzer; ESA: electrical spectrum analyzer.

Fig. 4
Fig. 4

Measured optical spectra for the proposed link (a) before and (b) after the optical filter when the RF signal is set to be 10-GHz. The solid line in (a) is the spectrum of filter.

Fig. 5
Fig. 5

(a) Measured frequency responses of conventional TM link (solid line) and proposed link (dash line); (b) RF spectrum at 13-GHz before dispersion compensation (i.e, power fading); (c) RF spectrum at 13-GHz after dispersion compensation. comp.: compensation.

Fig. 6
Fig. 6

Measured fundamental and IMD3 output powers as a function of the input RF power with (dash line) and w/o (solid line) CD compensation.

Fig. 7
Fig. 7

(a) Electrical spectra of the two-tone input tests for the conventional SSB-TM link (solid line) and proposed link (dash line) with the input power is 10-dBm per RF tone. (b) Measured back-to-back SFDR for SSB-TM (solid line) and proposed (dash line) link.

Fig. 8
Fig. 8

(a) Measured back-to-back EVM versus the input power of 16QAM before (square line in blue) and after (circle line in black) compensation. (b) Measured RF spectra and constellations when the RF input power is 18-dBm. Com.: compensation.

Fig. 9
Fig. 9

(a) Measured electrical spectra of the two-tone input tests for conventional TM link after 40-km transmission. (b) Transmission with only dispersion compensation. (c) Transmission with dispersion and IMD3 compensation. Comp.: compensation. The input power is 8-dBm per RF tone.

Fig. 10
Fig. 10

Measured SFDR of the TM (solid line) and proposed (dash line) link after 40-km transmission.

Fig. 11
Fig. 11

(a) Measured RF spectra and (b) SFDR performance of SSB-based link (solid line) and proposed link (dash line) for 40-km transmission when the frequency of the input RF tone is set to be 3-GHz.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E 1 = x ^ cosθexpj[ ω c t+γmsin(Ωt)]+ y ^ sinθexpj[ ω c t+msin(Ωt)].
m=π V 0 V π .
E 2 =[cosαcosθexpjγmsin(Ωt)+sinαsinθexpjmsin(Ωt)]exp(j ω c t).
E 2 = n= + [ cosαcosθ J n (γm)+sinαsinθ J n (m) ]expj( ω c +nΩ)t .
i= l n l0, n0 { cos 2 α cos 2 θ J n (γm) J l (γm)+cosαcosθsinαsinθ J n (γm) J l (m) +cosαcosθsinαsinθ J l (γm) J n (m)+ sin 2 α sin 2 θ J n (m) J l (m) }expj(ln)Ωt.
i | ω=Ω = l0, n=l+1 { cos 2 α cos 2 θ J l+1 (γm) J l (γm)+cosαcosθsinαsinθ J l+1 (γm) J l (m) +cosαcosθsinαsinθ J l (γm) J l+1 (m)+ sin 2 α sin 2 θ J l+1 (m) J l (m) } exp(jΩt) + L1, Ν=L1 { cos 2 α cos 2 θ J L1 (γm) J L (γm)+cosαcosθsinαsinθ J L1 (γm) J L (m) +cosαcosθsinαsinθ J L (γm) J L1 (m)+ sin 2 α sin 2 θ J L1 (m) J L (m) } exp(jΩt).
i | ω=Ω =2{ cos 2 α cos 2 θ J 1 (γm) J 0 (γm)+cosαcosθsinαsinθ J 1 (γm) J 0 (m) +cosαcosθsinαsinθ J 0 (γm) J 1 (m)+ sin 2 α sin 2 θ J 1 (m) J 0 (m) }cos(Ωt) +2{ cos 2 α cos 2 θ J 2 (γm) J 1 (γm)+cosαcosθsinαsinθ J 2 (γm) J 1 (m) +cosαcosθsinαsinθ J 1 (γm) J 2 (m)+ sin 2 α sin 2 θ J 2 (m) J 1 (m) }cos(Ωt).
i | ω=Ω ={ cos 2 α cos 2 θ[1 (γm/2) 2 ][γm (γm/2) 3 ] +cosαcosθsinαsinθ[1 (m/2) 2 ][γm (γm/2) 3 ] +cosαcosθsinαsinθ[1 (γm/2) 2 ][m (m/2) 3 ] + sin 2 α sin 2 θ[1 (m/2) 2 ][m (m/2) 3 ] }cosΩt +{ cos 2 α cos 2 θ[γm (γm/2) 3 ] (γm) 2 /8 +cosαcosθsinαsinθ[m (m/2) 3 ] (γm) 2 /8 +cosαcosθsinαsinθ[γm (γm/2) 3 ] m 2 /8 + sin 2 α sin 2 θ[m (m/2) 3 ] m 2 /8 }cosΩt.
i 3th ={ cos 2 α cos 2 θ (γm) 3 /4+ sin 2 α sin 2 θ m 3 /4 +cosαcosθsinαsinθ[ γ 3 + γ 2 +γ+1] (m/2) 3 }.
tan( α )tan( θ )=0.0542ortan( α )tan( θ )=0.6868.
P out = (i | ω=Ω ) 2 Z out = 1 2 Z out 2 [γm cos 2 α cos 2 θ+(γm+m)cosαcosθsinαsinθ+m sin 2 α sin 2 θ] 2 .
P in = 1 2 Z in ( m V π π ) 2 .
G= P out P in = Z in Z out ( π V π ) 2 [γ+(γ+1)tanαtanθ+ tan 2 α tan 2 θ] 2 ( tan 2 α+1)( tan 2 θ+1) .
α=θ=0.692 rad.
i | ω=2Ω = l0, n=l+2 { cos 2 α cos 2 θ J l+2 (γm) J l (γm)+cosαcosθsinαsinθ J l+2 (γm) J l (m) +cosαcosθsinαsinθ J l (γm) J l+2 (m)+ sin 2 α sin 2 θ J l+2 (m) J l (m) } exp(jΩt) + L2, Ν=L2 { cos 2 α cos 2 θ J L2 (γm) J L (γm)+cosαcosθsinαsinθ J L2 (γm) J L (m) +cosαcosθsinαsinθ J L (γm) J L2 (m)+ sin 2 α sin 2 θ J L2 (m) J L (m) } exp(jΩt).
i | ω=2Ω ={ cos 2 α cos 2 θ[1 (γm/2) 2 ] (γm/2) 2 +cosαcosθsinαsinθ[1 (γm/2) 2 ] (m/2) 2 +cosαcosθsinαsinθ[1 (m/2) 2 ] (γm/2) 2 + sin 2 α sin 2 θ[1 (m/2) 2 ] (m/2) 2 }cos2Ωt.
i | ω=2Ω ={ cos 2 α cos 2 θ (γm/2) 2 +cosαcosθsinαsinθ (m/2) 2 +cosαcosθsinαsinθ (γm/2) 2 + sin 2 α sin 2 θ (m/2) 2 }cos2Ωt.
tan( α )tan( θ )= γ 2 ortan( α )tan( θ )=1.

Metrics