Abstract

Efficient continuous-wave laser emission at 1856 nm from a Tm,Mg:LiNbO3 crystal slab with high Tm3+ doping concentration is reported. A maximum output power of 2.62 W is realized with a slope efficiency of 19.6% and the beam quality factor M2 of 1.7 at room temperature. We believe that this is the first demonstration of watt-level laser operation in Tm,Mg:LiNbO3 crystal and the output power is four orders of magnitude higher than that reported previously in Tm-doped LiNbO3 crystal. Performance degradation due to the photorefractive effect under high intensity 1856 nm laser is not observed thanks to the co-doping of magnesium ions. Quantitative analysis about the long-term photorefractive effect is also provided. Multi-wavelength laser operation is realized by using different narrow-band output couplers. This demonstration opens up a viable pathway towards 2-μm integrated optic devices for achieving laser oscillation, electro-optic and nonlinear optical effects within just one sample simultaneously.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys.56(3), 363–429 (1993).
    [CrossRef]
  2. A. Donaldson, “Candidate materials and technologies for integrated optics: fast and efficient electro-optic modulation,” J. Phys. D Appl. Phys.24(6), 785–802 (1991).
    [CrossRef]
  3. A. D' Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Lithium niobate integrated optical devices,” IEEE 3rd Transparent Optical Networks Conference, 131–134, June 18–21, 2001, Cracow, Australia.
    [CrossRef]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993).
    [CrossRef]
  5. L. F. Johnson and A. A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
    [CrossRef]
  6. E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
    [CrossRef]
  7. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
    [CrossRef]
  8. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  9. T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
    [CrossRef] [PubMed]
  10. T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
    [CrossRef]
  11. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
    [CrossRef]
  12. J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
    [CrossRef]
  13. X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
  14. X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express17(17), 14895–14901 (2009).
    [CrossRef] [PubMed]
  15. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett.15(9), 486–488 (1990).
    [CrossRef] [PubMed]
  16. L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
    [CrossRef]
  17. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
    [CrossRef]
  18. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
    [CrossRef]
  19. E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
    [CrossRef]
  20. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
    [CrossRef]
  21. S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
    [CrossRef]
  22. L. Nunez and F. Cusso, “Polarized absorption and energy levels of LiNbO3:Tm and LiNbO3(MgO):Tm,” J. Phys. Condens. Matter5(30), 5301–5312 (1993).
    [CrossRef]
  23. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
    [CrossRef]
  24. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  25. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
    [CrossRef]

2012

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

2010

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

2009

2008

2006

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

2005

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
[CrossRef]

2002

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

2000

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
[CrossRef]

1997

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

1996

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

1993

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys.56(3), 363–429 (1993).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993).
[CrossRef]

L. Nunez and F. Cusso, “Polarized absorption and energy levels of LiNbO3:Tm and LiNbO3(MgO):Tm,” J. Phys. Condens. Matter5(30), 5301–5312 (1993).
[CrossRef]

1992

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

1991

A. Donaldson, “Candidate materials and technologies for integrated optics: fast and efficient electro-optic modulation,” J. Phys. D Appl. Phys.24(6), 785–802 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

1990

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett.15(9), 486–488 (1990).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1973

1969

L. F. Johnson and A. A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
[CrossRef]

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Aggarwal, A.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Bagaev, S. N.

S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
[CrossRef]

Ballman, A. A.

L. F. Johnson and A. A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Barnes, N. P.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

Batay, L. E.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Bosworth, B. P.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Brown, C. M.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Cantelar, E.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Cheng, X.

Cusso, F.

L. Nunez and F. Cusso, “Polarized absorption and energy levels of LiNbO3:Tm and LiNbO3(MgO):Tm,” J. Phys. Condens. Matter5(30), 5301–5312 (1993).
[CrossRef]

Cussó, F.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
[CrossRef]

Dannenberg, A. J.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

de Sandro, J. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

DeMicheli, M. P.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Demidovich, A. A.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Donaldson, A.

A. Donaldson, “Candidate materials and technologies for integrated optics: fast and efficient electro-optic modulation,” J. Phys. D Appl. Phys.24(6), 785–802 (1991).
[CrossRef]

Duan, X. M.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Esterowitz, L.

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Geng, J. H.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

Grezes-Besset, C.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Hale, G. M.

Hang, Y.

He, Q.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Hempstead, M.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Jain, M.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Jiang, S. B.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

Johnson, L. F.

L. F. Johnson and A. A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
[CrossRef]

Jones, J. K.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

Ju, Y. L.

Kane, T. J.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

Kawaguchi, K.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Kim, C.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Kubo, T. S.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

Kück, S.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

Kuzmin, A. N.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Lallier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Lawrence, M.

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys.56(3), 363–429 (1993).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Li, M. J.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Lifante, G.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
[CrossRef]

Luo, T.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

Maiorov, A. P.

S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
[CrossRef]

Makino, T.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Milsom, J. W.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Mond, M.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

Montrose, D. C.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Mukherjee, S.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Nunez, L.

L. Nunez and F. Cusso, “Polarized absorption and energy levels of LiNbO3:Tm and LiNbO3(MgO):Tm,” J. Phys. Condens. Matter5(30), 5301–5312 (1993).
[CrossRef]

Ostrowsky, D. B.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Papuchon, M.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Pavlyuk, A. A.

S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
[CrossRef]

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Pelletier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Peng, H.

Pernas, P. L.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
[CrossRef]

Peyghambarian, N.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

Plakushchev, D. V.

S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
[CrossRef]

Pocholle, J. P.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

Querry, M. R.

Rivera, D. R.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Robinson, B. D.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993).
[CrossRef]

Sanz-García, J. A.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
[CrossRef]

Shepherd, D. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

Shevchuk, M. M.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Song, C. W.

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Sterling, J.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Stoneman, R. C.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Titov, A. N.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

Tropper, A. C.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

Vatnik, S. M.

S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
[CrossRef]

Wang, J.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

Wang, Y. Z.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Williams, W. O.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Wu, J. F.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

Xu, C.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Xu, J.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993).
[CrossRef]

Yao, B. Q.

Zhang, N.

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Zhang, S.

Zhang, Y. J.

Appl. Opt.

Appl. Phys. B

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002).
[CrossRef]

Appl. Phys. Lett.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Cancer Prev. Res. (Phila.)

T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012).
[CrossRef] [PubMed]

Chin. Opt. Lett.

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991).
[CrossRef]

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006).
[CrossRef]

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996).
[CrossRef]

J. Appl. Phys.

L. F. Johnson and A. A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
[CrossRef]

J. Phys. Condens. Matter

L. Nunez and F. Cusso, “Polarized absorption and energy levels of LiNbO3:Tm and LiNbO3(MgO):Tm,” J. Phys. Condens. Matter5(30), 5301–5312 (1993).
[CrossRef]

J. Phys. D Appl. Phys.

A. Donaldson, “Candidate materials and technologies for integrated optics: fast and efficient electro-optic modulation,” J. Phys. D Appl. Phys.24(6), 785–802 (1991).
[CrossRef]

Laser & Photon. Rev.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Quantum Electron.

S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000).
[CrossRef]

Rep. Prog. Phys.

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys.56(3), 363–429 (1993).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

A. D' Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Lithium niobate integrated optical devices,” IEEE 3rd Transparent Optical Networks Conference, 131–134, June 18–21, 2001, Cracow, Australia.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

σ-polarized absorption spectrum of the Tm,Mg:LiNbO3 crystal at room temperature.

Fig. 2
Fig. 2

Stimulated emission cross section of Tm3+ 3F4 manifold at room temperature for σ-polarization.

Fig. 3
Fig. 3

Experimental setup of the Tm,Mg:LiNbO3 laser. Input mirror (IM) and output coupler (OC) are flat mirrors.

Fig. 4
Fig. 4

CW laser output power of Tm,Mg:LiNbO3 crystal laser versus the absorbed pump power with different output couplers. Inset: the laser spectrum of Tm,Mg:LiNbO3 crystal laser.

Fig. 5
Fig. 5

Laser beam radius as a function of distance from the waist location (z = 0) at output power of 2.62 W.

Fig. 6
Fig. 6

Multi-wavelength laser operation of the Tm,Mg:LiNbO3 crystal and absorption intensity for water and Cr2+:ZnSe in a range of 1700-2000 nm. Black line: 1856 nm; Green line: 1881 nm; Orange line: 1902 nm; Pink line: 1938 nm.

Fig. 7
Fig. 7

Laser output power versus absorbed pump power at different wavelengths of the Tm,Mg:LiNbO3 crystal laser.

Fig. 8
Fig. 8

Gain cross section spectra of Tm3+: 3F43H6 of the Tm, Mg: LiNbO3 crystal at different inversion factors p.

Fig. 9
Fig. 9

The ratios of radii along c-axis and b-axis under different power densities for a long period of time.

Fig. 10
Fig. 10

532 nm laser beam profiles. (a) without Tm,Mg:LiNbO3 crystal. (b) transmitted laser beam profile after 600 s exposure of 1500 W/cm2 power density.

Tables (1)

Tables Icon

Table 1 Laser wavelength of Tm3+-doped laser materials

Metrics