Abstract

We demonstrate a new 3D fabrication method to achieve the same results as those obtained by the two-photon excitation technique, by using a simple one-photon elaboration method in a very low absorption regime. Desirable 2D and 3D submicrometric structures, such as spiral, chiral, and woodpile architectures, with feature size as small as 190 nm have been fabricated, by using just a few milliwatts of a continuous-wave laser at 532 nm and a commercial SU8 photoresist. Different aspects of the direct laser writing based on ultralow one-photon absorption (LOPA) technique are investigated and compared with the TPA technique, showing several advantages, such as simplicity and low cost.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Torok and F. J. Kao, (eds.), Optical Imaging and Microscopy, 2nd ed.(Springer Series in Optical Sciences2007).
  2. J. B. Pawley, (ed.), Handbook of Biological Confocal Microscopy, 3rd ed. (Berlin, Springer2006).
    [CrossRef]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
    [CrossRef] [PubMed]
  4. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
    [CrossRef]
  5. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
    [CrossRef] [PubMed]
  6. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
    [CrossRef] [PubMed]
  7. M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
    [CrossRef]
  8. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15, 3426–3436 (2007).
    [CrossRef] [PubMed]
  9. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245, 843–845 (1989).
    [CrossRef] [PubMed]
  10. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
    [CrossRef] [PubMed]
  11. C. Rensch, S. Hell, M. V. Schickfus, and S. Hunklinger, “Laser scanner for direct writing lithography,” Appl. Opt.28, 3754–3758 (1989).
    [CrossRef] [PubMed]
  12. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253, 358–379 (1959).
    [CrossRef]
  13. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett.23, 1745–1747 (1998).
    [CrossRef]
  14. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
    [CrossRef]
  15. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
    [CrossRef] [PubMed]
  16. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
    [CrossRef]
  17. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express13, 9605–9611 (2005).
    [CrossRef] [PubMed]
  18. H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80, 3673–3675 (2002).
    [CrossRef]
  19. C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
    [CrossRef]
  20. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
    [CrossRef]
  21. M. Thiel, J. Fischer, G. V. Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
    [CrossRef]
  22. M. Malinauskas, P. Danileviius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
    [CrossRef] [PubMed]
  23. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology,” J. Lightwave Technol.23, 401–412 (2005).
    [CrossRef]

2011

2010

M. Thiel, J. Fischer, G. V. Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

2009

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

2007

2005

2004

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
[CrossRef]

2003

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

2002

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80, 3673–3675 (2002).
[CrossRef]

2001

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
[CrossRef] [PubMed]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

1999

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

1998

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

1989

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245, 843–845 (1989).
[CrossRef] [PubMed]

C. Rensch, S. Hell, M. V. Schickfus, and S. Hunklinger, “Laser scanner for direct writing lithography,” Appl. Opt.28, 3754–3758 (1989).
[CrossRef] [PubMed]

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253, 358–379 (1959).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Baets, R.

Barlow, S.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15, 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Beckx, S.

Bienstman, P.

Bogaerts, W.

Busch, K.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
[CrossRef] [PubMed]

Campenhout, J. V.

Chang, T.-W.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
[CrossRef]

Chen, V. W.

Chen, Y. L.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Chichkov, B. N.

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Danileviius, P.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
[CrossRef] [PubMed]

Deubel, M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Doan, V.

Dong, W.

Dumon, P.

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Farsari, M.

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

Fischer, J.

M. Thiel, J. Fischer, G. V. Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Freymann, G. V.

M. Thiel, J. Fischer, G. V. Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Hales, J. M.

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
[CrossRef] [PubMed]

Haske, W.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Hell, S.

Hsu, C. C.

Hunklinger, S.

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

Juodkazis, S.

M. Malinauskas, P. Danileviius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
[CrossRef]

Kawata, S.

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80, 3673–3675 (2002).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Lai, N. D.

Lee, C.-H.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
[CrossRef]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Lee, K.-L.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
[CrossRef]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Lin, J.-Y.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
[CrossRef]

Luyssaert, B.

Malinauskas, M.

Marder, S. R.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15, 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Maruo, S.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
[CrossRef]

Mizeikis, V.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
[CrossRef]

Pang, Y. K.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245, 843–845 (1989).
[CrossRef] [PubMed]

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Perry, J. W.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15, 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Rckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Rensch, C.

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245, 843–845 (1989).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253, 358–379 (1959).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Schickfus, M. V.

Schwartz, B. J.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Su, H. M.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Sun, H.-B.

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80, 3673–3675 (2002).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Taillaert, D.

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Tam, W. Y.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Tanaka, T.

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80, 3673–3675 (2002).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Thiel, M.

M. Thiel, J. Fischer, G. V. Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Thourhout, D. V.

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
[CrossRef] [PubMed]

Von Freymann, G.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Vrijen, R.

Wang, H. Z.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Wang, J.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
[CrossRef]

Wang, X.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Wegener, M.

M. Thiel, J. Fischer, G. V. Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Wiaux, V.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

Witzgall, G.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253, 358–379 (1959).
[CrossRef]

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

Xu, J. F.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Yablonovitch, E.

Zeng, Z. H.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys. A79, 2027– 2031 (2004).
[CrossRef]

Appl. Phys. Lett.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

M. Thiel, J. Fischer, G. V. Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82, 2758–2560 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett.82, 2212–2214 (2003).
[CrossRef]

H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80, 3673–3675 (2002).
[CrossRef]

J. Lightwave Technol.

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Mater.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Nat. Photonics

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

Nature

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature398, 51–54 (1999).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404, 53–56 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Roy. Soc. A

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253, 358–379 (1959).
[CrossRef]

Science

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245, 843–845 (1989).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Other

P. Torok and F. J. Kao, (eds.), Optical Imaging and Microscopy, 2nd ed.(Springer Series in Optical Sciences2007).

J. B. Pawley, (ed.), Handbook of Biological Confocal Microscopy, 3rd ed. (Berlin, Springer2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Sketch of the experimental setup used to fabricate desired sub-micrometer 3D structures. PZT: piezoelectric translator; OL: oil immersion microscope objective (×100, NA = 1.3); DM: dichroic mirror; M: mirror; QWP: quarter-wave plate; S: electronic shutter; L1-L3: lenses; PH: pinhole; F: 580 nm long-pass filter; APD: silicon avalanche photodiode. (b) Simulation of intensity distribution at the focusing region using vector Debye method, including the absorption of the material (σ = 723 m−1). The two curves represent the intensities distributions along transverse (x- or y-axis) and longitudinal (z-axis) directions, respectively, at a 10λ depth.

Fig. 2
Fig. 2

(a) Absorption spectrum of SU8 photoresist, plotted on a logarithmic scale. (b) Fluorescence photon number versus excitation intensity. Square dots are experimental data and continuous line is a linear fit.

Fig. 3
Fig. 3

Fabrication of voxels at different z-positions and with different exposure times. (a) Identical voxels array realized at different z-positions. (b) Example of a voxels array at z4 showing the effect of exposure time, i.e., dose. The yellow color curves indicate the shape of the voxel as a function of the exposure time (t1, t2 and t3, etc.). (c) Theoretical calculation of the contour plot of light intensity at the focusing region of the used OL (NA= 1.3, n= 1.515, λ = 532 nm). This explains the evolution of the voxel shape as a function of the exposure dose as shown in (b). (d) An array of touching voxels fabricated with low dose (short exposure time, t1), showing an ellipsoidal form similar to results obtained by the TPA method.

Fig. 4
Fig. 4

(a) SEM image of a voxels array fabricated at different exposure times and with P = 2.5 mW. (b) Exposure time dependence of voxel size, with different laser power values, P = 2.5 mW; 5 mW; 7.5 mW, respectively. The continuous curves are obtained by a tentative fit using the diameter-dose relationship for one-photon absorption [18, 19]. Insert shows a SEM image of a small voxel obtained with an exposure time of 0.5 second at a laser power of 2.5 mW.

Fig. 5
Fig. 5

SEM image of a chiral structure fabricated with the following parameters: distance between rods = 2 μm; distance between layers = 0.75 μm; number of layers = 20; laser power = 2.8 mW. (a) View of the whole structure, (b) Zoom in on the top surface of the structure, and (c) Side view of the structure.

Fig. 6
Fig. 6

SEM image of a spiral structure fabricated with the following parameters: diameter of a spiral = 2 μm; period of spiral in z direction = 2 μm; distance between centers of two close spirals = 2.5 μm; spiral height = 15 μm; laser power = 2.6 mW. (a) View of the whole structure, (b) Zoom in the top surface of the structure, and (c) Side view of the structure.

Fig. 7
Fig. 7

Dependence of voxel sizes on separation distance between voxels, showing the influence of energy accumulation from this focusing spot to others. Insets show simulated images (blue background) and SEM images (black background) of 2D submicrometer voxels array fabricated with different distances between two voxels: 2 μm; 1 μm; 0.5 μm.

Metrics