Abstract

Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO2 – 30HfO2 glass doped with 0.3 mol% Er3+ ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er3+ emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. S. Rayleigh, “The problem of the whispering gallery,” Philos. Mag.20, 1001–1004 (1910).
  2. G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).
  3. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
    [CrossRef]
  4. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
    [CrossRef]
  5. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes —part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
    [CrossRef]
  6. I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express19(10), 9523–9528 (2011).
    [CrossRef] [PubMed]
  7. S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
    [CrossRef]
  8. F. Lissillour, D. Messager, G. M. Stéphan, and P. Féron, “Whispering-gallery-mode laser at 1.56 mum excited by a fiber taper,” Opt. Lett.26(14), 1051–1053 (2001).
    [CrossRef] [PubMed]
  9. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  10. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
    [CrossRef]
  11. S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express17(17), 14694–14699 (2009).
    [CrossRef] [PubMed]
  12. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012).
    [CrossRef] [PubMed]
  13. Y. K. Chembo and N. Yu, “On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators,” Opt. Lett.35(16), 2696–2698 (2010).
    [CrossRef] [PubMed]
  14. L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express20(7), 7616–7629 (2012).
    [CrossRef] [PubMed]
  15. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A20(1), 157–162 (2003).
    [CrossRef] [PubMed]
  16. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
    [CrossRef]
  17. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett.32(13), 1800–1802 (2007).
    [CrossRef] [PubMed]
  18. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett.22(15), 1129–1131 (1997).
    [CrossRef] [PubMed]
  19. B. E. Little, Y. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol.17(4), 704–715 (1999).
    [CrossRef]
  20. A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).
  21. R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
    [CrossRef]

2012 (2)

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012).
[CrossRef] [PubMed]

L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express20(7), 7616–7629 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express19(10), 9523–9528 (2011).
[CrossRef] [PubMed]

2010 (2)

Y. K. Chembo and N. Yu, “On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators,” Opt. Lett.35(16), 2696–2698 (2010).
[CrossRef] [PubMed]

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

2009 (1)

2007 (1)

2006 (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes —part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

2004 (2)

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

2003 (1)

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

1998 (1)

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
[CrossRef]

1997 (1)

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

1910 (1)

J. W. S. Rayleigh, “The problem of the whispering gallery,” Philos. Mag.20, 1001–1004 (1910).

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

Armellini, C.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

Baldini, F.

Berneschi, S.

Bia, P.

Birks, T. A.

Carpentiero, A.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

Carturan, G.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Chembo, Y. K.

Chen, T.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012).
[CrossRef] [PubMed]

Cheung, G.

Chiappini, A.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

Chiasera, A.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Conti, G. N.

Cosi, F.

De Sario, M.

Di Tommaso, A.

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Farca, G.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
[CrossRef]

Feron, P.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Féron, P.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

F. Lissillour, D. Messager, G. M. Stéphan, and P. Féron, “Whispering-gallery-mode laser at 1.56 mum excited by a fiber taper,” Opt. Lett.26(14), 1051–1053 (2001).
[CrossRef] [PubMed]

Ferrari, M.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Furusawa, A.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
[CrossRef]

Georgiades, N. Ph.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
[CrossRef]

Giannetti, A.

Gonçalves, R. R.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Han, M.

Haus, H. A.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes —part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A20(1), 157–162 (2003).
[CrossRef] [PubMed]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
[CrossRef]

Jacques, F.

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

Kimble, H. J.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Knight, J. C.

Kotov, N. A.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
[CrossRef]

Laine, Y. P.

Lee, H.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012).
[CrossRef] [PubMed]

Li, J.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012).
[CrossRef] [PubMed]

Lissillour, F.

Little, B. E.

Maleki, L.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes —part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A20(1), 157–162 (2003).
[CrossRef] [PubMed]

Mazzola, M.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

Mescia, L.

Messaddeq, Y.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Messager, D.

Montagna, M.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Moser, E.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

Murzina, T. V.

Nunzi Conti, G.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Nunzi-Conti, G.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Pelli, S.

I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express19(10), 9523–9528 (2011).
[CrossRef] [PubMed]

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express17(17), 14694–14699 (2009).
[CrossRef] [PubMed]

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Prudenzano, F.

Rayleigh, J. W. S.

J. W. S. Rayleigh, “The problem of the whispering gallery,” Philos. Mag.20, 1001–1004 (1910).

Razdolskiy, I.

Ribeiro, S. J. L.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Righini, G. C.

I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express19(10), 9523–9528 (2011).
[CrossRef] [PubMed]

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express17(17), 14694–14699 (2009).
[CrossRef] [PubMed]

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Ristic, D.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Rosenberger, A. T.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
[CrossRef]

Savchenkov, A. A.

Shopova, S. I.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
[CrossRef]

Soria, S.

I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express19(10), 9523–9528 (2011).
[CrossRef] [PubMed]

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express17(17), 14694–14699 (2009).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Stéphan, G. M.

Tiribilli, B.

Vahala, K. J.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Varas, S.

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

Vernooy, D. W.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
[CrossRef]

Wang, A.

Wickramanayake, W. M. S.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
[CrossRef]

Yu, N.

Zampedri, L.

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett.85(25), 6101–6103 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes —part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Sol-Gel Sci. & Technol. (1)

A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol-Gel Sci. & Technol.60, 408–425 (2011).

Laser Photon. Rev. (1)

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi-Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

R. R. Gonçalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Philos. Mag. (1)

J. W. S. Rayleigh, “The problem of the whispering gallery,” Philos. Mag.20, 1001–1004 (1910).

Phys. Rev. A (1)

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), R2293–R2296 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012).
[CrossRef] [PubMed]

Riv. Nuovo Cim. (1)

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristić, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim.34, 435–488 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The effective refractive index of the 70SiO2-30HfO2 coated microsphere as a function of the radius of the silica sphere for the fundamental equatorial (n = 0; l-|m| = 0) TE mode at 1560 nm. The refractive index of the sphere is 1.44 and of the coating 1.6. The coating thicknesses, given in μm, are also reported in the figure. The blue lines correspond to the border cases of no coating (blank sphere) or of very thick coating (bulk sphere with n = 1.6). The horizontal dashed line corresponds to the effective refractive index of the propagation mode of a silica fiber taper with a waist of 3 μm. The vertical dashed line correspond to a silica sphere diameter of 155 μm which is the diameter of the sphere coated in our experiment.

Fig. 2
Fig. 2

The electric field profiles for a 1 μm coating thickness (left) and for the integral of the absolute electric field inside the sphere core, coating and air versus the coating thicknesses (right) for a sphere 155 μm in diameter for the fundamental (n = 0) and two first internal modes (n = 1,2) closest to 1560 nm. The vertical lines in the left part of the figure correspond to the core-coating and air-coating interfaces.

Fig. 3
Fig. 3

The scheme of the experimental setup.

Fig. 4
Fig. 4

The WGM luminescence spectra of the 0.3 mol% Er3+ 70SiO2-30HfO2 coated microsphere after different number of dips. The background signal in absence of coupling is also reported for each spectrum.

Fig. 5
Fig. 5

The average integrated luminescence in the 1535-1585 nm range for the 0.3 mol% Er3+ 70SiO2-30HfO2 coated sphere in respect to the number of dips and to the percentage of the fundamental WGM electric field (e. f.) inside the coating as calculated from the number of dips.

Fig. 6
Fig. 6

The effective refractive index of the 70SiO2-30HfO2 coated microsphere as a function of the radius of the silica sphere for the fundamental equatorial (n = 0; l-|m| = 0) TE mode at 1560 nm and for the fundamental and the first two internal modes for a 1 μm coating thickness. The refractive index of the sphere is 1.44 and of the coating 1.6. The horizontal dashed line corresponds to the effective refractive index of the propagation mode of a silica fiber taper with a waist of 3 μm. The vertical dashed line correspond to a silica sphere diameter of 155 μm which is the diameter of the sphere coated in our experiment.

Fig. 7
Fig. 7

The theoretical calculation of the free spectral range for the fundamental (n = 0) and the first two internal modes (n = 1,2) around 1.56 μm for a sphere diameter of 155 μm in respect to the coating thickness and the experimentally measured values of the free spectral range (Fig. 4). The experimental bars in the image are the OSA resolution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ψ l (k n s r 1 )=α ψ l (k n c r 1 )+β χ l (k n c r 1 ) P s ψ l '(k n s r 1 )=α P c ψ l '(k n c r 1 )+β P c χ l '(k n c r 1 ) α ψ l (k n c r 2 )+β χ l (k n c r 2 )=γ χ l (k n 0 r 2 ) α P c ψ l '(k n c r 2 )+β P c χ l '(k n c r 2 )=γ P 0 χ l '(k n 0 r 2 ),

Metrics