Abstract

We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress in semiconductor excitable lasers for photonic spike processing

Paul R. Prucnal, Bhavin J. Shastri, Thomas Ferreira de Lima, Mitchell A. Nahmias, and Alexander N. Tait
Adv. Opt. Photon. 8(2) 228-299 (2016)

SIMPEL: Circuit model for photonic spike processing laser neurons

Bhavin J. Shastri, Mitchell A. Nahmias, Alexander N. Tait, Ben Wu, and Paul R. Prucnal
Opt. Express 23(6) 8029-8044 (2015)

Fast photonic information processing using semiconductor lasers with delayed optical feedback: Role of phase dynamics

Romain Modeste Nguimdo, Guy Verschaffelt, Jan Danckaert, and Guy Van der Sande
Opt. Express 22(7) 8672-8686 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London 117(4), 500–544 (1952).
    [PubMed]
  2. L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature 337, 244–247 (1989).
    [Crossref]
  3. F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011).
    [Crossref]
  4. S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Opt. Lett. 36(23), 4476–4478 (2011).
    [Crossref] [PubMed]
  5. D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
    [Crossref] [PubMed]
  6. A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
    [Crossref]
  7. B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004).
    [Crossref]
  8. F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
    [Crossref]
  9. P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 17(4), 487–495 (2009).
    [Crossref]
  10. B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
    [Crossref]
  11. M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw. 3(3), 363–374 (1992).
    [Crossref] [PubMed]
  12. Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks 23(7), 881–886 (2010).
    [Crossref] [PubMed]
  13. J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett. 17(5), 220–222 (1996).
    [Crossref]

2013 (1)

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

2011 (4)

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011).
[Crossref]

S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Opt. Lett. 36(23), 4476–4478 (2011).
[Crossref] [PubMed]

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
[Crossref]

2010 (1)

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks 23(7), 881–886 (2010).
[Crossref] [PubMed]

2009 (1)

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 17(4), 487–495 (2009).
[Crossref]

2007 (1)

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

2004 (1)

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004).
[Crossref]

1996 (1)

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett. 17(5), 220–222 (1996).
[Crossref]

1992 (1)

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw. 3(3), 363–374 (1992).
[Crossref] [PubMed]

1989 (1)

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature 337, 244–247 (1989).
[Crossref]

1952 (1)

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London 117(4), 500–544 (1952).
[PubMed]

Agladze, K. I.

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature 337, 244–247 (1989).
[Crossref]

Balanov, A.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

Barbay, S.

Cantu, H.I.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Chow, D. H.

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett. 17(5), 220–222 (1996).
[Crossref]

Dekkery, N. H.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011).
[Crossref]

DeYong, M. R.

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw. 3(3), 363–374 (1992).
[Crossref] [PubMed]

Ebong, I.E.

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 17(4), 487–495 (2009).
[Crossref]

Farrer, I.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

Fields, C.

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw. 3(3), 363–374 (1992).
[Crossref] [PubMed]

Figueiredo, J.M.L.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Findley, R. L.

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw. 3(3), 363–374 (1992).
[Crossref] [PubMed]

Forchel, A.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
[Crossref]

Gammaitoni, L.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
[Crossref]

Garcia-Ojalvo, J.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004).
[Crossref]

Goulding, D.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Greene, G.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Hartmann, F.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
[Crossref]

Hartnett, M.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Hegarty, S.P.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Hodgkin, A. L.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London 117(4), 500–544 (1952).
[PubMed]

Höfling, S.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
[Crossref]

Huang, Z.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011).
[Crossref]

Huxley, A. F.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London 117(4), 500–544 (1952).
[PubMed]

Huyet, G.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Ironside, C.N.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Janson, N. B.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

Javaloyes, J.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Kelly, A.E.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Krinsky, V. I.

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature 337, 244–247 (1989).
[Crossref]

Kuhnert, L.

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature 337, 244–247 (1989).
[Crossref]

Kuszelewicz, R.

Li, S.-R.

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 17(4), 487–495 (2009).
[Crossref]

Lindner, B.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004).
[Crossref]

Mazumder, P.

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 17(4), 487–495 (2009).
[Crossref]

McInerney, J. G.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Melnik, S.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Neiman, A.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004).
[Crossref]

Nogaret, A.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

Oene, M. V.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011).
[Crossref]

Pedaci, F.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011).
[Crossref]

Pershin, Y. V.

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks 23(7), 881–886 (2010).
[Crossref] [PubMed]

Rachinskii, D.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Rasskazov, O.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Ritchie, D. A.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

Romeira, B.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Samardak, A. S.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

Santos, H. J. D.

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett. 17(5), 220–222 (1996).
[Crossref]

Schimansky-Geier, L.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004).
[Crossref]

Schulman, J. N.

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett. 17(5), 220–222 (1996).
[Crossref]

Ventra, M. D.

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks 23(7), 881–886 (2010).
[Crossref] [PubMed]

Worschech, L.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
[Crossref]

Yacomotti, A. M.

Appl. Phys. Lett. (1)

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett. 98(24), 242109 (2011).
[Crossref]

IEEE Electron Dev. Lett. (1)

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett. 17(5), 220–222 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

IEEE Trans. Neural Netw. (1)

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw. 3(3), 363–374 (1992).
[Crossref] [PubMed]

IEEE Trans. Very Large Scale Integration (VLSI) Systems (1)

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 17(4), 487–495 (2009).
[Crossref]

J. Appl. Phys. (1)

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys. 109(10), 102408 (2011).
[Crossref]

J. Physiol.-London (1)

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London 117(4), 500–544 (1952).
[PubMed]

Nat. Phys. (1)

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011).
[Crossref]

Nature (1)

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature 337, 244–247 (1989).
[Crossref]

Neural Networks (1)

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks 23(7), 881–886 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep. 392(6), 321–424 (2004).
[Crossref]

Phys. Rev. Lett. (1)

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98(15), 153903 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the RTD photodetector and LD semiconductor chips forming the RTD-LD excitable optoelectronic device. Inset is the cross-section showing the epi-layer structure of the RTD. (b) Experimental I–V characteristics of LD, RTD-LD, and I–V model fit. (c) Equivalent electrical model of the RTD-LD circuit. (d) Excitable pulses in both the electrical and the optical RTD-LD outputs triggered by either a square or a pulse input signals at Vdc =2.9 V.

Fig. 2
Fig. 2

(a) Experimental time traces of electrically noise induced neuron-like pulsing behavior in an RTD-LD excitable optoelectronic system in both the electrical and the optical domains. The RTD-LD is biased in the first PDR region (Vdc=2.9 V) and modulated with noise strength of (i)–(ii) 100 mV; (iii)–(iv) 175 mV. Multi-pulsing bursts when the RTD-LD is biased in the second PDR region, Vdc=3.2 V, and modulated with noise strength of 150 mV (v)–(vi). Histogram of the ISI statistics of the laser output as a function of noise amplitude and using the d.c. bias as a control parameter: (b) Vdc = 2.85 V; (c) Vdc = 2.9 V.

Fig. 3
Fig. 3

(a) Numerical simulation of voltage and photon density, (V, S) showing noise induced pulsing dynamical regimes (i)–(iv) in the first PDR (Vdc = 2.9), and (v)–(vi) in the second PDR (Vdc = 3.5). The dimensionless noise strength employed in the simulations are: (i)–(ii) χ = 0.128; (iii)–(iv) χ = 0.158; and (v)–(vi) χ = 0.310. ISI statistics of the laser output as a function of noise strength χ and using the bias voltage as a control parameter: (b) Vdc = 2.85; (c) Vdc = 2.9.

Fig. 4
Fig. 4

Decomposition of the excitable orbit into four stages. The first fast stage corresponds to a sudden rise of the voltage (black line) without variation of the current. The second stage consists in a slow decay of both V and I along the right part of the f(V) nullcline (red line). Next, another fast stage correspond to a voltage drop to the other side of the same nullcline (green dotted line) without variation of the current, finally followed by last slow stage where both V and I recover their initial values. The laser output being sensitive to the bias current, only the slow stages drive its evolution. Vdc = 1.27, see text for the values of the other parameters.

Fig. 5
Fig. 5

Experimental photo-detected laser output time traces of: (a) electrically noise induced pulsing in the first PDR using a noise amplitude level of 600 mV; (b) optically induced pulsing in the second PDR employing a 5.5 mW optical power signal at λ = 1550 nm AM modulated with an electrical noise signal with 1.5 V amplitude. Inset: zoom of optical and electrical single pulses. Statistic of the times between minima/maxima in the laser output (with histogram bin size of 500 ps) when the RTD-LD is biased: (c) in the first PDR region (Vdc = 2.0 V), and (d) second PDR region (Vdc = 2.075 V).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V ˙ = 1 μ [ I f ( V ) χ ξ ( t ) ] ,
I ˙ = μ [ V d c + V i n γ I V ]
N ˙ = 1 τ n [ I I t h N N δ 1 δ { 1 ε S } S ]
S ˙ = 1 τ p [ N δ 1 δ { 1 ε S } S S + β N ]
f ( V ) = A ln [ 1 + e q ( B C + n 1 V ) / k B T 1 + e q ( B C n 1 V ) / k B T ] [ π 2 + tan 1 ( C n 1 V D ) ] + H ( e n 2 q V / k B T 1 )
L T e = 1 f 2 1 ln V d c f 2 1 I + V d c f 2 1 I + 1 f 1 1 ln V d c f 1 1 I V d c f 1 1 I +

Metrics