Abstract

We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London117(4), 500–544 (1952).
    [PubMed]
  2. L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature337, 244–247 (1989).
    [CrossRef]
  3. F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys.7, 259–264 (2011).
    [CrossRef]
  4. S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Opt. Lett.36(23), 4476–4478 (2011).
    [CrossRef] [PubMed]
  5. D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
    [CrossRef] [PubMed]
  6. A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
    [CrossRef]
  7. B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004).
    [CrossRef]
  8. F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
    [CrossRef]
  9. P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems17(4), 487–495 (2009).
    [CrossRef]
  10. B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
    [CrossRef]
  11. M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw.3(3), 363–374 (1992).
    [CrossRef] [PubMed]
  12. Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks23(7), 881–886 (2010).
    [CrossRef] [PubMed]
  13. J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett.17(5), 220–222 (1996).
    [CrossRef]

2013

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

2011

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys.7, 259–264 (2011).
[CrossRef]

S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Opt. Lett.36(23), 4476–4478 (2011).
[CrossRef] [PubMed]

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
[CrossRef]

2010

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks23(7), 881–886 (2010).
[CrossRef] [PubMed]

2009

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems17(4), 487–495 (2009).
[CrossRef]

2007

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

2004

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004).
[CrossRef]

1996

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett.17(5), 220–222 (1996).
[CrossRef]

1992

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw.3(3), 363–374 (1992).
[CrossRef] [PubMed]

1989

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature337, 244–247 (1989).
[CrossRef]

1952

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London117(4), 500–544 (1952).
[PubMed]

Agladze, K. I.

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature337, 244–247 (1989).
[CrossRef]

Balanov, A.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

Barbay, S.

Cantu, H.I.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

Chow, D. H.

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett.17(5), 220–222 (1996).
[CrossRef]

Dekkery, N. H.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys.7, 259–264 (2011).
[CrossRef]

DeYong, M. R.

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw.3(3), 363–374 (1992).
[CrossRef] [PubMed]

Ebong, I.E.

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems17(4), 487–495 (2009).
[CrossRef]

Farrer, I.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

Fields, C.

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw.3(3), 363–374 (1992).
[CrossRef] [PubMed]

Figueiredo, J.M.L.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

Findley, R. L.

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw.3(3), 363–374 (1992).
[CrossRef] [PubMed]

Forchel, A.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
[CrossRef]

Gammaitoni, L.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
[CrossRef]

Garcia-Ojalvo, J.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004).
[CrossRef]

Goulding, D.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Greene, G.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Hartmann, F.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
[CrossRef]

Hartnett, M.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Hegarty, S.P.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Hodgkin, A. L.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London117(4), 500–544 (1952).
[PubMed]

Höfling, S.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
[CrossRef]

Huang, Z.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys.7, 259–264 (2011).
[CrossRef]

Huxley, A. F.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London117(4), 500–544 (1952).
[PubMed]

Huyet, G.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Ironside, C.N.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

Janson, N. B.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

Javaloyes, J.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

Kelly, A.E.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

Krinsky, V. I.

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature337, 244–247 (1989).
[CrossRef]

Kuhnert, L.

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature337, 244–247 (1989).
[CrossRef]

Kuszelewicz, R.

Li, S.-R.

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems17(4), 487–495 (2009).
[CrossRef]

Lindner, B.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004).
[CrossRef]

Mazumder, P.

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems17(4), 487–495 (2009).
[CrossRef]

McInerney, J. G.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Melnik, S.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Neiman, A.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004).
[CrossRef]

Nogaret, A.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

Oene, M. V.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys.7, 259–264 (2011).
[CrossRef]

Pedaci, F.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys.7, 259–264 (2011).
[CrossRef]

Pershin, Y. V.

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks23(7), 881–886 (2010).
[CrossRef] [PubMed]

Rachinskii, D.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Rasskazov, O.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Ritchie, D. A.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

Romeira, B.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

Samardak, A. S.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

Santos, H. J. D.

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett.17(5), 220–222 (1996).
[CrossRef]

Schimansky-Geier, L.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004).
[CrossRef]

Schulman, J. N.

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett.17(5), 220–222 (1996).
[CrossRef]

Ventra, M. D.

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks23(7), 881–886 (2010).
[CrossRef] [PubMed]

Worschech, L.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
[CrossRef]

Yacomotti, A. M.

Appl. Phys. Lett.

F. Hartmann, L. Gammaitoni, S. Höfling, A. Forchel, and L. Worschech, “Light-induced stochastic resonance in a nanoscale resonant-tunneling diode,” Appl. Phys. Lett.98(24), 242109 (2011).
[CrossRef]

IEEE Electron Dev. Lett.

J. N. Schulman, H. J. D. Santos, and D. H. Chow, “Physics-based RTD current-voltage equation,” IEEE Electron Dev. Lett.17(5), 220–222 (1996).
[CrossRef]

IEEE J. Quantum Electron.

B. Romeira, J. Javaloyes, J.M.L. Figueiredo, C.N. Ironside, H.I. Cantu, and A.E. Kelly, “Delayed feedback dynamics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron.49(1), 31–42 (2013).
[CrossRef]

IEEE Trans. Neural Netw.

M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new vlsi hybrid analog-digital neural processing element,” IEEE Trans. Neural Netw.3(3), 363–374 (1992).
[CrossRef] [PubMed]

IEEE Trans. Very Large Scale Integration (VLSI) Systems

P. Mazumder, S.-R. Li, and I.E. Ebong, “Tunneling-based cellular nonlinear network architectures for image processing,” IEEE Trans. Very Large Scale Integration (VLSI) Systems17(4), 487–495 (2009).
[CrossRef]

J. Appl. Phys.

A. S. Samardak, A. Nogaret, N. B. Janson, A. Balanov, I. Farrer, and D. A. Ritchie, “Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure,” J. Appl. Phys.109(10), 102408 (2011).
[CrossRef]

J. Physiol.-London

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol.-London117(4), 500–544 (1952).
[PubMed]

Nat. Phys.

F. Pedaci, Z. Huang, M. V. Oene, and N. H. Dekkery, “Excitable particles in an optical torque wrench,” Nat. Phys.7, 259–264 (2011).
[CrossRef]

Nature

L. Kuhnert, K. I. Agladze, and V. I. Krinsky, “Image processing using light-sensitive chemical waves,” Nature337, 244–247 (1989).
[CrossRef]

Neural Networks

Y. V. Pershin and M. D. Ventra, “Experimental demonstration of associative memory with memristive neural networks,” Neural Networks23(7), 881–886 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rep.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise in excitable systems,” Phys. Rep.392(6), 321–424 (2004).
[CrossRef]

Phys. Rev. Lett.

D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98(15), 153903 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the RTD photodetector and LD semiconductor chips forming the RTD-LD excitable optoelectronic device. Inset is the cross-section showing the epi-layer structure of the RTD. (b) Experimental I–V characteristics of LD, RTD-LD, and I–V model fit. (c) Equivalent electrical model of the RTD-LD circuit. (d) Excitable pulses in both the electrical and the optical RTD-LD outputs triggered by either a square or a pulse input signals at Vdc =2.9 V.

Fig. 2
Fig. 2

(a) Experimental time traces of electrically noise induced neuron-like pulsing behavior in an RTD-LD excitable optoelectronic system in both the electrical and the optical domains. The RTD-LD is biased in the first PDR region (Vdc=2.9 V) and modulated with noise strength of (i)–(ii) 100 mV; (iii)–(iv) 175 mV. Multi-pulsing bursts when the RTD-LD is biased in the second PDR region, Vdc=3.2 V, and modulated with noise strength of 150 mV (v)–(vi). Histogram of the ISI statistics of the laser output as a function of noise amplitude and using the d.c. bias as a control parameter: (b) Vdc = 2.85 V; (c) Vdc = 2.9 V.

Fig. 3
Fig. 3

(a) Numerical simulation of voltage and photon density, (V, S) showing noise induced pulsing dynamical regimes (i)–(iv) in the first PDR (Vdc = 2.9), and (v)–(vi) in the second PDR (Vdc = 3.5). The dimensionless noise strength employed in the simulations are: (i)–(ii) χ = 0.128; (iii)–(iv) χ = 0.158; and (v)–(vi) χ = 0.310. ISI statistics of the laser output as a function of noise strength χ and using the bias voltage as a control parameter: (b) Vdc = 2.85; (c) Vdc = 2.9.

Fig. 4
Fig. 4

Decomposition of the excitable orbit into four stages. The first fast stage corresponds to a sudden rise of the voltage (black line) without variation of the current. The second stage consists in a slow decay of both V and I along the right part of the f(V) nullcline (red line). Next, another fast stage correspond to a voltage drop to the other side of the same nullcline (green dotted line) without variation of the current, finally followed by last slow stage where both V and I recover their initial values. The laser output being sensitive to the bias current, only the slow stages drive its evolution. Vdc = 1.27, see text for the values of the other parameters.

Fig. 5
Fig. 5

Experimental photo-detected laser output time traces of: (a) electrically noise induced pulsing in the first PDR using a noise amplitude level of 600 mV; (b) optically induced pulsing in the second PDR employing a 5.5 mW optical power signal at λ = 1550 nm AM modulated with an electrical noise signal with 1.5 V amplitude. Inset: zoom of optical and electrical single pulses. Statistic of the times between minima/maxima in the laser output (with histogram bin size of 500 ps) when the RTD-LD is biased: (c) in the first PDR region (Vdc = 2.0 V), and (d) second PDR region (Vdc = 2.075 V).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V ˙ = 1 μ [ I f ( V ) χ ξ ( t ) ] ,
I ˙ = μ [ V d c + V i n γ I V ]
N ˙ = 1 τ n [ I I t h N N δ 1 δ { 1 ε S } S ]
S ˙ = 1 τ p [ N δ 1 δ { 1 ε S } S S + β N ]
f ( V ) = A ln [ 1 + e q ( B C + n 1 V ) / k B T 1 + e q ( B C n 1 V ) / k B T ] [ π 2 + tan 1 ( C n 1 V D ) ] + H ( e n 2 q V / k B T 1 )
L T e = 1 f 2 1 ln V d c f 2 1 I + V d c f 2 1 I + 1 f 1 1 ln V d c f 1 1 I V d c f 1 1 I +

Metrics