Abstract

We propose and demonstrate a novel actively mode-locked fiber laser based on a stretch-type time-lens. The pulse generated by this scheme has high repetition rate and large bandwidth while no nonlinearity is participated. A 10-GHz chirped pulse train with 18-ps duration and 11.6-nm bandwidth is obtained, which is then extra-cavity compressed down to 825 fs. The pulse characteristics dependent on the cavity dispersion and time-lens strength are discussed. Pulse propagation in the laser is similar with dissipative soliton in all-normal-dispersion laser. The results demonstrate that the stretch-lens inside the actively mode-locked laser can effectively broaden the spectral bandwidth, instead of the fiber nonlinearity, which can then support a high-repetition-rate “linear dissipative soliton” pulse shaping in a very compact design.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B9(8), 1358–1361 (1992).
    [CrossRef]
  2. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  3. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron.31(3), 591–598 (1995).
    [CrossRef]
  4. T. F. Carruthers and I. N. Duling III, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett.21(23), 1927–1929 (1996).
    [CrossRef] [PubMed]
  5. J. Li, P. A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett.12(9), 1150–1152 (2000).
    [CrossRef]
  6. M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett.12(12), 1613–1615 (2000).
    [CrossRef]
  7. T. F. Carruthers, I. N. Duling III, M. Horowitz, and C. R. Menyuk, “Dispersion management in a harmonically mode-locked fiber soliton laser,” Opt. Lett.25(3), 153–155 (2000).
    [CrossRef] [PubMed]
  8. W.-W. Hsiang, C.-Y. Lin, M.-F. Tien, and Y. Lai, “Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous phase modulation,” Opt. Lett.30(18), 2493–2495 (2005).
    [CrossRef] [PubMed]
  9. M. E. Grein, L. A. Jiang, H. A. Haus, E. P. Ippen, C. McNeilage, J. H. Searls, and R. S. Windeler, “Observation of quantum-limited timing jitter in an active, harmonically mode-locked fiber laser,” Opt. Lett.27(11), 957–959 (2002).
    [CrossRef] [PubMed]
  10. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron.40(10), 1458–1470 (2004).
    [CrossRef]
  11. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett.14(12), 630–632 (1989).
    [CrossRef] [PubMed]
  12. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol.24(7), 2649–2662 (2006).
    [CrossRef]
  13. Y. T. Dai and C. Xu, “Femtosecond pulses with 1.1 GHz repetition rate generated from a CW laser without mode-locking,” in Conference on Laser and Electro-Optics (CLEO 2009) (Optical Society of America, 2009), paper CMA5.
  14. Y. T. Dai and C. Xu, “Femtosecond pulses with tunable, high repetition rate generated from a CW laser without mode-locking,” in Conference on Optical Fiber Communication (OFC 2009) (Optical Society of America, 2009), paper OWB4.
    [CrossRef]
  15. Y. T. Dai and C. Xu, “Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop,” Opt. Express17(8), 6584–6590 (2009).
    [CrossRef] [PubMed]
  16. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach-Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009).
    [CrossRef] [PubMed]
  17. M. Nakazawa, H. Kubota, A. Sahara, and K. Tumura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron.34(7), 1075–1081 (1998).
    [CrossRef]
  18. R. Nagar, D. Abraham, and G. Eisenstein, “Pure phase-modulation mode locking in semiconductor lasers,” Opt. Lett.17(16), 1119–1121 (1992).
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).
  20. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
    [CrossRef] [PubMed]
  21. R. X. Wang, Y. T. Dai, L. Yan, J. Wu, K. Xu, Y. Li, and J. Lin, “Dissipative soliton in actively mode-locked fiber laser,” Opt. Express20(6), 6406–6411 (2012).
    [CrossRef] [PubMed]
  22. Finisar Corporation, “Programmable narrow-band filtering using the WaveShaper 1000E and WaveShaper 4000E,” product whitepaper.
  23. K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
    [CrossRef]

2013 (1)

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

2012 (1)

2009 (2)

2006 (2)

2005 (1)

2004 (2)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron.40(10), 1458–1470 (2004).
[CrossRef]

2002 (1)

2000 (3)

J. Li, P. A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett.12(9), 1150–1152 (2000).
[CrossRef]

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett.12(12), 1613–1615 (2000).
[CrossRef]

T. F. Carruthers, I. N. Duling III, M. Horowitz, and C. R. Menyuk, “Dispersion management in a harmonically mode-locked fiber soliton laser,” Opt. Lett.25(3), 153–155 (2000).
[CrossRef] [PubMed]

1998 (1)

M. Nakazawa, H. Kubota, A. Sahara, and K. Tumura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron.34(7), 1075–1081 (1998).
[CrossRef]

1996 (1)

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron.31(3), 591–598 (1995).
[CrossRef]

1992 (2)

1989 (1)

Abraham, D.

Anderson, D.

Andrekson, P. A.

J. Li, P. A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett.12(9), 1150–1152 (2000).
[CrossRef]

Bakhshi, B.

J. Li, P. A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett.12(9), 1150–1152 (2000).
[CrossRef]

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Carruthers, T. F.

Chen, Y.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron.40(10), 1458–1470 (2004).
[CrossRef]

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Dai, Y. T.

Desaix, M.

Duling III, I. N.

Eisenstein, G.

Grein, M. E.

Haus, H. A.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron.40(10), 1458–1470 (2004).
[CrossRef]

M. E. Grein, L. A. Jiang, H. A. Haus, E. P. Ippen, C. McNeilage, J. H. Searls, and R. S. Windeler, “Observation of quantum-limited timing jitter in an active, harmonically mode-locked fiber laser,” Opt. Lett.27(11), 957–959 (2002).
[CrossRef] [PubMed]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron.31(3), 591–598 (1995).
[CrossRef]

Horowitz, M.

Hosako, I.

Hsiang, W.-W.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron.40(10), 1458–1470 (2004).
[CrossRef]

M. E. Grein, L. A. Jiang, H. A. Haus, E. P. Ippen, C. McNeilage, J. H. Searls, and R. S. Windeler, “Observation of quantum-limited timing jitter in an active, harmonically mode-locked fiber laser,” Opt. Lett.27(11), 957–959 (2002).
[CrossRef] [PubMed]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron.31(3), 591–598 (1995).
[CrossRef]

Ji, Y. F.

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

Jiang, L. A.

Kawanishi, T.

Kolner, B. H.

Kubota, H.

M. Nakazawa, H. Kubota, A. Sahara, and K. Tumura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron.34(7), 1075–1081 (1998).
[CrossRef]

Lai, Y.

Li, J.

J. Li, P. A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett.12(9), 1150–1152 (2000).
[CrossRef]

Li, J. Q.

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

Li, Y.

Lin, C.-Y.

Lin, J.

Lin, J. T.

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

Lisak, M.

McNeilage, C.

Menyuk, C. R.

Morohashi, I.

Nagar, R.

Nakazawa, M.

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett.12(12), 1613–1615 (2000).
[CrossRef]

M. Nakazawa, H. Kubota, A. Sahara, and K. Tumura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron.34(7), 1075–1081 (1998).
[CrossRef]

Nazarathy, M.

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron.31(3), 591–598 (1995).
[CrossRef]

Quiroga-Teixeiro, M. L.

Renninger, W.

Sahara, A.

M. Nakazawa, H. Kubota, A. Sahara, and K. Tumura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron.34(7), 1075–1081 (1998).
[CrossRef]

Sakamoto, T.

Searls, J. H.

Sotobayashi, H.

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron.31(3), 591–598 (1995).
[CrossRef]

Tien, M.-F.

Tumura, K.

M. Nakazawa, H. Kubota, A. Sahara, and K. Tumura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron.34(7), 1075–1081 (1998).
[CrossRef]

van Howe, J.

Wang, R. X.

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

R. X. Wang, Y. T. Dai, L. Yan, J. Wu, K. Xu, Y. Li, and J. Lin, “Dissipative soliton in actively mode-locked fiber laser,” Opt. Express20(6), 6406–6411 (2012).
[CrossRef] [PubMed]

Windeler, R. S.

Wise, F.

Wise, F. W.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Wu, J.

Xu, C.

Xu, K.

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

R. X. Wang, Y. T. Dai, L. Yan, J. Wu, K. Xu, Y. Li, and J. Lin, “Dissipative soliton in actively mode-locked fiber laser,” Opt. Express20(6), 6406–6411 (2012).
[CrossRef] [PubMed]

Yan, L.

Yin, F. F.

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

Yoshida, E.

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett.12(12), 1613–1615 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron.31(3), 591–598 (1995).
[CrossRef]

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron.40(10), 1458–1470 (2004).
[CrossRef]

M. Nakazawa, H. Kubota, A. Sahara, and K. Tumura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron.34(7), 1075–1081 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Li, P. A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett.12(9), 1150–1152 (2000).
[CrossRef]

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett.12(12), 1613–1615 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM,” Laser Phys. Lett.10(5), 055108 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Other (4)

Finisar Corporation, “Programmable narrow-band filtering using the WaveShaper 1000E and WaveShaper 4000E,” product whitepaper.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).

Y. T. Dai and C. Xu, “Femtosecond pulses with 1.1 GHz repetition rate generated from a CW laser without mode-locking,” in Conference on Laser and Electro-Optics (CLEO 2009) (Optical Society of America, 2009), paper CMA5.

Y. T. Dai and C. Xu, “Femtosecond pulses with tunable, high repetition rate generated from a CW laser without mode-locking,” in Conference on Optical Fiber Communication (OFC 2009) (Optical Society of America, 2009), paper OWB4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the fiber laser cavity elements used for the proposed model. AM: amplitude modulator. PM:phase modulator.

Fig. 2
Fig. 2

Pulse duration (a) and bandwidth (b) as a function of total cavity dispersion (by changing the SMF length, according to Table 1) and modulation depth of the PM.

Fig. 3
Fig. 3

Numerical simulation results. (a) Temporal intensity profile with linear chirp, inset: optical spectrum of the pulse. (b) Evolution of pulse width (black) and spectral bandwidth (red) through the laser cavity.

Fig. 4
Fig. 4

Schematic of the proposed actively mode-locked fiber laser. RF: RF sinusoidal source. VGA: variable gain amplifier. PL: polarizer. ISO: isolator. PS: phase shifter.

Fig. 5
Fig. 5

(a) Oscilloscope trace of output pulse. (b) RF spectrum of the 10 GHz mode-locked pulse train. (c) Optical spectrum of the output pulse and the parabolic phase response of waveshaper. (d) The compressed pulse temporal profile (black line) and Gaussian fit (red circles).

Tables (1)

Tables Icon

Table 1 Parameters Uused in the Ssimulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u(t)= P 0 exp[ t 2 2 τ 2 (1iC) ]= P 0 exp( t 2 2q ),
q out = A q in +B C q in +D ,
T AM T PM T D T G =[ 1 2g Ω g 2 2i β 2 L M ω 2 /2 i Δ m ω 2 1 ].
q= ( M ω 2 /2 i Δ m ω 2 ) ( 2g Ω g 2 2i β 2 L) .

Metrics