Abstract

We propose and analyze a compact polarizing beam splitter (PBS) based on a metal-insulator-metal (MIM) structure inserted into a multimode interference coupler (MMI). Owing to the MIM structure, the TE polarized state is reflected by the cut-off condition while the TM polarized state is transmitted by the surface plasmon polariton, and the two polarized states can thus be separated. In this paper, the dependence of the reflected TE and transmitted TM field intensities on the MIM length and the gap thickness has been studied systematically. The proposed PBS structure, with a total size of 4 × 0.7 × 44 µm3 is designed with MIM length, gap thickness, and metal thickness of 0.6 µm, 0.5 µm, and 0.05 µm, respectively. In the designed PBS, the transmittance for the TM polarized light, reflectance for the TE polarized light, extinction ratio, and insertion losses of the TE and TM modes are obtained using a 3D finite-difference time-domain method to be 0.9, 0.88, 12.55 dB, and 1.1 dB and 0.9 dB, respectively. The designed PBS has a much shorter length, 44 µm, compared to previous PBS devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Hong, H. H. Ryoo, S. G. Lee, E.-H. Lee, D. Woo, and S. Kim, “Novel design of polarization splitter based on a quasi-state multimode interference coupler,” in Proceedings of CLEO 2002 Tech. Dig. 1, 194–195 (2002).
  2. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
    [CrossRef]
  3. L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
    [CrossRef]
  4. P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett.6(2), 245–248 (1994).
    [CrossRef]
  5. M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
    [CrossRef]
  6. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
    [CrossRef]
  7. C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
    [CrossRef]
  8. L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett.18(6), 740–742 (2006).
    [CrossRef]
  9. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett.28(23), 2384–2386 (2003).
    [CrossRef] [PubMed]
  10. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
    [CrossRef]
  11. T. Yu, X. Jiang, Q. Liao, W. Qi, J. Yang, and M. Wang, “Self-imaging effect in photonic crystal multimode waveguides exhibiting no band gaps,” Chin. Opt. Lett.5(12), 690–692 (2007).
  12. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express15(4), 1823–1831 (2007).
    [CrossRef] [PubMed]
  13. Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett.19(11), 825–827 (2007).
    [CrossRef]
  14. M. Djavid, A. Ghaffari, and M. S. Abrishamian, “Coupled mode analysis of photonic crystal add-drop filters based on ring resonators,” J. Opt. Soc. Am. B25(11), 1829–1832 (2008).
    [CrossRef]
  15. Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
    [CrossRef]
  16. C. Son, B. Kim, J. Shin, and N. Dagli, “Very compact metal slab waveguide reflectors as integrated high reflectivity mirrors on high index contrast waveguides,” J. Lightwave Technol.29(19), 2999–3003 (2011).
    [CrossRef]
  17. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  18. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express16(21), 16903–16915 (2008).
    [CrossRef] [PubMed]
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media LLC), Chap. 2.
  20. T. Augustsson, “Bragg grating–assisted MMI-coupler for add-drop multiplexing,” J. Lightwave Technol.16(8), 1517–1522 (1998).
    [CrossRef]

2011

2008

2007

C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett.19(11), 825–827 (2007).
[CrossRef]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express15(4), 1823–1831 (2007).
[CrossRef] [PubMed]

T. Yu, X. Jiang, Q. Liao, W. Qi, J. Yang, and M. Wang, “Self-imaging effect in photonic crystal multimode waveguides exhibiting no band gaps,” Chin. Opt. Lett.5(12), 690–692 (2007).

2006

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett.18(6), 740–742 (2006).
[CrossRef]

2005

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

2003

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett.28(23), 2384–2386 (2003).
[CrossRef] [PubMed]

1998

1997

M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
[CrossRef]

1995

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1994

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett.6(2), 245–248 (1994).
[CrossRef]

Abrishamian, M. S.

Augustsson, T.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

Cai, J.

Chang, S. H.

C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

Chiu, T. C.

C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

Dagli, N.

Dai, D.

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett.19(11), 825–827 (2007).
[CrossRef]

de Vreede, A. I.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

Djavid, M.

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Ghaffari, A.

Green, F. H.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

He, S.

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett.19(11), 825–827 (2007).
[CrossRef]

Hirayama, K.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

Hong, J. M.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Hu, M. H.

M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
[CrossRef]

Huang, Y.

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett.18(6), 740–742 (2006).
[CrossRef]

Huang, Z.

M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
[CrossRef]

Jeong, J. W.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Jiang, J.

Jiang, X.

Jung, J.

Kim, B.

Kim, H.

Kim, S.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

Lee, B.

Lee, E.-H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Lee, I.-M.

Lee, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Levy, M.

M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
[CrossRef]

Liao, Q.

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Metaal, E. G.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Morita, Y.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

Nordin, G. P.

Osgood, R. M.

M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
[CrossRef]

Park, J.

Park, S. R.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Park, S.-G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Qi, W.

Qiang, Z.

Ryu, H. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Scarmozzino, R.

M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
[CrossRef]

Shi, Y.

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett.19(11), 825–827 (2007).
[CrossRef]

Shin, J.

Smit, M. K.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

Son, C.

Soref, R. A.

Tai, C.-Y.

C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

Tsuji, Y.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

Verbeek, B. H.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

Wang, M.

Wang, W.

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett.6(2), 245–248 (1994).
[CrossRef]

Wei, P.

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett.6(2), 245–248 (1994).
[CrossRef]

Woo, D.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

Yang, J.

Yariv, A.

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett.18(6), 740–742 (2006).
[CrossRef]

Yu, T.

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Zhou, W.

Zhu, L.

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett.18(6), 740–742 (2006).
[CrossRef]

Chin. Opt. Lett.

IEEE Photon. Technol. Lett.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, and S. Kim, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15(1), 72–74 (2003).
[CrossRef]

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP–InP,” IEEE Photon. Technol. Lett.6(3), 402–405 (1994).
[CrossRef]

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett.6(2), 245–248 (1994).
[CrossRef]

M. H. Hu, Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “Tunable Mach–Zehnder polarization splitter using height-tapered Y-branches,” IEEE Photon. Technol. Lett.9(6), 773–775 (1997).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett.18(6), 740–742 (2006).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005).
[CrossRef]

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett.19(11), 825–827 (2007).
[CrossRef]

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

J. M. Hong, H. H. Ryoo, S. G. Lee, E.-H. Lee, D. Woo, and S. Kim, “Novel design of polarization splitter based on a quasi-state multimode interference coupler,” in Proceedings of CLEO 2002 Tech. Dig. 1, 194–195 (2002).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media LLC), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) 3D configuration of the PBS structure with an embedded MIM, (b) 2D cross section schematic of MIM-embedded slab waveguide.

Fig. 2
Fig. 2

Transmittance results of (a) TE mode and (b) TM mode for the MIM-embedded waveguide varying LM and GM. (c) TM mode, with GM = 0.5 μm, versus the MIM length from 0 to 2 μm.

Fig. 3
Fig. 3

(a) Normalized intensities of the TE and TM modes according to the variation in the MIM position (LA) from 5 to 35 μm. Other design parameters are GM = 0.5 μm, LM = 0.6 μm, WWG = 4 μm, and HWG = 0.7 μm. (b) Propagating field profile along the MMI with a length (LWG) of 44 μm. The MIM position LA is 21 μm, and port A, B, and C are assigned for reflected TE mode, light source, and transmitted TM mode, respectively.

Fig. 4
Fig. 4

TE field profiles in the cross-section of port A for different MIM positions in the MMI coupler. The figures represent the MIM position (LA) of (a) 21 μm, (b) 22 μm and (c) 23 μm.

Fig. 5
Fig. 5

Normalized intensity of (a) TE mode (b) TM mode in port A and C versus MIM position LA = 21 μm, 22 μm, and 23 μm with the MIM length LM = 0.6 μm and varied gap thickness GM = 0.4 μm, 0.5 μm, and 0.6 μm

Fig. 6
Fig. 6

Results of the normalized TE and TM intensities as a function of MIM metal thickness.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E( y,x )= m=0 M1 c m ψ m ( y )exp[ j m( m+2 )π 3 L π x ],
E TM ( y, L WG )=T( λ 0 ). m=0 M1 c m ψ m ( y )exp[ j m( m+2 )π 3 L π L WG ],
E TE ( y,0 )=Γ( λ 0 ). m=0 M1 c m ψ m ( y )exp[ j m( m+2 )π 3 L π L A ],

Metrics