Abstract

We design, fabricate and characterize a plasmonic honeycomb lattice absorber with almost perfect absorption at 1140 nm over a wide incident angle range. This absorber also possesses a narrow-band, angle- and polarization-dependent high-order resonance in the short-wavelength range, with a bandwidth of 19 nm and angle sensitivity of 3 nm per degree. The nature of this high-order absorption band is analyzed through finite-element simulations. We believe it is due to Bragg coupling of the incident light to the backward-propagating surface plasmon polariton through the periodic modulation of the structure.Such fine absorption bands can find applications in plasmonic sensors and spectrally selective thermal emitters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
    [CrossRef]
  2. D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788 (2004).
    [CrossRef] [PubMed]
  3. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B78, 125113 (2008).
    [CrossRef]
  5. M. Yan, Z.C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett.99, 233901 (2007).
    [CrossRef]
  6. J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  7. N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008).
    [CrossRef] [PubMed]
  8. Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors,” Nano Lett.5, 1367 (2005).
    [CrossRef] [PubMed]
  9. O. Hayden, R. Agarwal, and C. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5, 352 (2006).
    [CrossRef] [PubMed]
  10. P. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys.76,1 (1994).
    [CrossRef]
  11. M. Laroche, R. Carminati, and J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006).
    [CrossRef]
  12. S. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380 (2003).
    [CrossRef]
  13. J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
    [CrossRef]
  14. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010).
    [CrossRef] [PubMed]
  15. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
    [CrossRef]
  16. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17, 11039–11044 (2009).
    [CrossRef] [PubMed]
  17. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
    [CrossRef] [PubMed]
  18. M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
    [CrossRef] [PubMed]
  19. D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
    [CrossRef] [PubMed]
  20. Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
    [CrossRef]
  21. T. Kelf, Y. Sugawara, and J. Baumberg, “Plasmonic Band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95, 116802 (2005).
    [CrossRef] [PubMed]
  22. T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005).
    [CrossRef]
  23. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
    [CrossRef] [PubMed]
  24. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  25. E. Palik, Handbook of Optical Constants of Solids(Academic, New York, 1985).

2011 (4)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
[CrossRef]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

2010 (3)

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
[CrossRef]

2009 (3)

D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
[CrossRef] [PubMed]

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17, 11039–11044 (2009).
[CrossRef] [PubMed]

2008 (2)

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008).
[CrossRef] [PubMed]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B78, 125113 (2008).
[CrossRef]

2007 (2)

M. Yan, Z.C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett.99, 233901 (2007).
[CrossRef]

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
[CrossRef]

2006 (2)

O. Hayden, R. Agarwal, and C. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5, 352 (2006).
[CrossRef] [PubMed]

M. Laroche, R. Carminati, and J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006).
[CrossRef]

2005 (3)

T. Kelf, Y. Sugawara, and J. Baumberg, “Plasmonic Band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95, 116802 (2005).
[CrossRef] [PubMed]

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005).
[CrossRef]

Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors,” Nano Lett.5, 1367 (2005).
[CrossRef] [PubMed]

2004 (1)

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380 (2003).
[CrossRef]

2000 (1)

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

1994 (1)

P. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys.76,1 (1994).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Abdelaziz, R.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Agarwal, R.

O. Hayden, R. Agarwal, and C. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5, 352 (2006).
[CrossRef] [PubMed]

Ahn, Y.

Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors,” Nano Lett.5, 1367 (2005).
[CrossRef] [PubMed]

Bade, K.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Baumberg, J.

T. Kelf, Y. Sugawara, and J. Baumberg, “Plasmonic Band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95, 116802 (2005).
[CrossRef] [PubMed]

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005).
[CrossRef]

Carminati, R.

M. Laroche, R. Carminati, and J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006).
[CrossRef]

Chakravadhanula, V.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Chan, C.

Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
[CrossRef]

D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
[CrossRef] [PubMed]

Chen, X.

Chen, Y.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cole, R.

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005).
[CrossRef]

Decker, M.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Dunning, J.

Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors,” Nano Lett.5, 1367 (2005).
[CrossRef] [PubMed]

Elbahri, M.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Faupel, F.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Fedotov, V.

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008).
[CrossRef] [PubMed]

Feng, Q.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

Fleming, J.

S. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380 (2003).
[CrossRef]

Freymann, G.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Gansel, J.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Giessen, H.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Greffet, J.

M. Laroche, R. Carminati, and J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006).
[CrossRef]

Han, D.

D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
[CrossRef] [PubMed]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Hayden, O.

O. Hayden, R. Agarwal, and C. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5, 352 (2006).
[CrossRef] [PubMed]

Hedayati, M.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Hu, C.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17, 11039–11044 (2009).
[CrossRef] [PubMed]

Huang, C.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

Javaherirahim, M.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Kelf, T.

T. Kelf, Y. Sugawara, and J. Baumberg, “Plasmonic Band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95, 116802 (2005).
[CrossRef] [PubMed]

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005).
[CrossRef]

Lai, Y.

D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
[CrossRef] [PubMed]

Laroche, M.

M. Laroche, R. Carminati, and J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006).
[CrossRef]

Lieber, C.

O. Hayden, R. Agarwal, and C. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5, 352 (2006).
[CrossRef] [PubMed]

Lin, S.

S. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380 (2003).
[CrossRef]

Lin, Z.

Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
[CrossRef]

Linden, S.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010).
[CrossRef] [PubMed]

Luo, X.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17, 11039–11044 (2009).
[CrossRef] [PubMed]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Moreno, J.

S. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380 (2003).
[CrossRef]

Mozooni, B.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Padilla, W J.

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010).
[CrossRef] [PubMed]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids(Academic, New York, 1985).

Papasimakis, N.

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008).
[CrossRef] [PubMed]

Park, J.

Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors,” Nano Lett.5, 1367 (2005).
[CrossRef] [PubMed]

Pendry, J.

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788 (2004).
[CrossRef] [PubMed]

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

Poo, Y.

Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
[CrossRef]

Pu, M.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

Qiu, M.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B78, 125113 (2008).
[CrossRef]

M. Yan, Z.C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett.99, 233901 (2007).
[CrossRef]

Richards, P.

P. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys.76,1 (1994).
[CrossRef]

Rill, M.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Ruan, Z.C.

M. Yan, Z.C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett.99, 233901 (2007).
[CrossRef]

Saile, V.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Shalaev, V.

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
[CrossRef]

Smith, D.

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788 (2004).
[CrossRef] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010).
[CrossRef] [PubMed]

Strunkus, T.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Sugawara, Y.

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005).
[CrossRef]

T. Kelf, Y. Sugawara, and J. Baumberg, “Plasmonic Band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95, 116802 (2005).
[CrossRef] [PubMed]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Tavassolizadeh, A.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Thiel, M.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Wang, C.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Wang, M.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

Wegener, M.

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wiltshire, M.

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788 (2004).
[CrossRef] [PubMed]

Wu, R.

Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
[CrossRef]

Yan, M.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B78, 125113 (2008).
[CrossRef]

M. Yan, Z.C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett.99, 233901 (2007).
[CrossRef]

Yan, W.

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B78, 125113 (2008).
[CrossRef]

Yang, Y.

Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
[CrossRef]

Zaporojtchenko, V.

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Zhang, Z.

D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
[CrossRef] [PubMed]

Zhao, Z.

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17, 11039–11044 (2009).
[CrossRef] [PubMed]

Zheludev, N.

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Zi, J.

D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Lin, J. Moreno, and J. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83, 380 (2003).
[CrossRef]

J. Hao, J. Wang, X. Liu, W J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Appl. Phys. (3)

P. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys.76,1 (1994).
[CrossRef]

M. Laroche, R. Carminati, and J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006).
[CrossRef]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109, 074510 (2010).
[CrossRef]

Nano Lett. (2)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors,” Nano Lett.5, 1367 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

O. Hayden, R. Agarwal, and C. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5, 352 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
[CrossRef]

Opt. Express (1)

Opt. Express. (1)

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express.19, 17413–17420 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (3)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

T. Kelf, Y. Sugawara, R. Cole, and J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2005).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B78, 125113 (2008).
[CrossRef]

Phys. Rev. Lett. (7)

M. Yan, Z.C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett.99, 233901 (2007).
[CrossRef]

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett.104, 207403 (2010).
[CrossRef] [PubMed]

D. Han, Y. Lai, J. Zi, Z. Zhang, and C. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett.102, 123904 (2009).
[CrossRef] [PubMed]

Y. Poo, R. Wu, Z. Lin, Y. Yang, and C. Chan, “Experimental realization of self-Guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett.102, 093903 (2011).
[CrossRef]

T. Kelf, Y. Sugawara, and J. Baumberg, “Plasmonic Band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett.95, 116802 (2005).
[CrossRef] [PubMed]

Science (2)

J. Gansel, M. Thiel, M. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788 (2004).
[CrossRef] [PubMed]

Other (1)

E. Palik, Handbook of Optical Constants of Solids(Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the structure of the honeycomb lattice metamaterial absorber. The bottom layer and nanodisks are gold and the middle layer is Al2O3. The inter-distance between two adjacent disks is 310 nm, and the diameter of the nanodisks is 180 nm. θ denotes the incident angle, and φ the sample azimuthal orientation. (b) Top-view SEM images of the absorber.

Fig. 2
Fig. 2

Measured absorption spectra for both polarizations and orientations:(a) E⊥Sxz, (b) H⊥Sxz, (c) E⊥Syz, (d) H⊥Syz. Numbers 0° – 60° are corresponding to the incident angles. The maximum absorbance for each incident angle is also indicated in the figures.

Fig. 3
Fig. 3

Simulated absorption spectral map for both polarizations and orientations:(a) E⊥Sxz, (b) H⊥Sxz, (c) E⊥Syz, (d) H⊥Syz. The black dashed lines illustrate the angle-dependent high-order resonance.

Fig. 4
Fig. 4

(a) Schematic diagram of the structure in xy plane used in simulation. (b, c) Calculated field distribution in the yz plane at x=268.5 nm at resonances (b) at 1140 nm at normal incidence and (c) at 880 nm at 60° incident angle.

Fig. 5
Fig. 5

Absorption spectral map shown in frequency-ky for the TM mode in the yz incident plane. The light line of air is drawn in solid black line. Two red curves depict the dispersion relation of SPPs at an air/alumina/gold interface, with the left curve for the backward SPPs wave and the right curve for forward SPPs wave. The frequency is normalized by c/ay, where c is the speed of light, and ky is normalized by 2π/ay. ay is 930 nm, the lattice constant along y-axis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β = k 0 sin θ + q m n ,
Q f = λ r FWHM

Metrics