Abstract

Plasmon waveguide resonance (PWR) sensors are particularly useful for biosensing due to their unique ability to perform sensing with two different polarizations. In this paper we report a comprehensive performance comparison between the surface plasmon resonance (SPR) sensor and the PWR sensor in terms of the sensitivity and the refractive index resolution. Both sensors were optimized using a genetic algorithm to acquire their best performance for bulk sensing applications. The experimental results show that the PWR sensor has a refractive index resolution of 5 × 10−7 RIU which is 6 times smaller than that of the optimized SPR sensor. The TE polarization in the PWR sensor has a resolution of 1.4 × 10−6 RIU which is smaller than the SPR sensor. The polarization diversity in the PWR sensor is another advantage which can be used to improve the measurement reliability.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  2. S. Janz, A. Densmore, D. X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki, G. Lopinski, A. Delâge, R. McKinnon, P. Cheben, and B. Lamontagne, “Silicon photonic wire waveguide sensors,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 229–264.
  3. A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser and Photonics Reviews5(4), 571–606 (2011).
    [CrossRef]
  4. A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun.3(4), 254–258 (1971).
    [CrossRef]
  5. Z. Salamon, M. F. Brown, and G. Tollin, “Plasmon resonance spectroscopy: Probing molecular interactions within membranes,” Trends Biochem. Sci.24(6), 213–219 (1999).
    [CrossRef] [PubMed]
  6. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
    [CrossRef] [PubMed]
  7. M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
    [CrossRef]
  8. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
    [CrossRef] [PubMed]
  9. M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
    [CrossRef] [PubMed]
  10. M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
    [CrossRef]
  11. J. S. A. F. Bahrami and M. Mojahedi, “A highly optimized plasmon waveguide resonance biosensor,” in IEEE Photonics Conference (IEEE, 2012).
    [CrossRef]
  12. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
    [CrossRef]
  13. T. Lebyedyeva, Y. Frolov, S. Kurlov, M. Budnyk, Y. Minov, P. Sutkovyi, and P. Shpylovyi, “Modeling and data processing for thin-film optical sensors,” in 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS (2011), 119–124.
    [CrossRef]
  14. H. Zhang, K. S. Orosz, H. Takahashi, and S. S. Saavedra, “Broadband plasmon waveguide resonance spectroscopy for probing biological thin films,” Appl. Spectrosc.63(9), 1062–1067 (2009).
    [CrossRef] [PubMed]
  15. M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron.20(9), 1718–1727 (2005).
    [CrossRef] [PubMed]
  16. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: Approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]
  17. F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).
  18. A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
    [CrossRef] [PubMed]
  19. S. G. Alasag, N. Cansever, and M. M. Aslan, “Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers,” in Proc. SPIE8424, Nanophotonics IV, 84243A (2012).
  20. J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (A Bradford Book, 1992).
  21. D. P. Edward, Handbook of Optical Constants of Solids (Academic Press, 1997).
  22. http://www.ssens.nl/ .
  23. G. Dyankov, M. Zekriti, and M. Bousmina, “Dual-mode surface-plasmon sensor based on bimetallic film,” Appl. Opt.51(13), 2451–2456 (2012).
    [CrossRef] [PubMed]
  24. J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).
  25. G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B16(4), 1297–1311 (1977).
    [CrossRef]

2012 (3)

S. G. Alasag, N. Cansever, and M. M. Aslan, “Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers,” in Proc. SPIE8424, Nanophotonics IV, 84243A (2012).

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).

G. Dyankov, M. Zekriti, and M. Bousmina, “Dual-mode surface-plasmon sensor based on bimetallic film,” Appl. Opt.51(13), 2451–2456 (2012).
[CrossRef] [PubMed]

2011 (2)

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser and Photonics Reviews5(4), 571–606 (2011).
[CrossRef]

2009 (2)

2008 (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

2007 (1)

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

2005 (4)

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron.20(9), 1718–1727 (2005).
[CrossRef] [PubMed]

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

2003 (2)

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

1999 (1)

Z. Salamon, M. F. Brown, and G. Tollin, “Plasmon resonance spectroscopy: Probing molecular interactions within membranes,” Trends Biochem. Sci.24(6), 213–219 (1999).
[CrossRef] [PubMed]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

1977 (1)

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B16(4), 1297–1311 (1977).
[CrossRef]

1971 (1)

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun.3(4), 254–258 (1971).
[CrossRef]

Abbas, A.

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser and Photonics Reviews5(4), 571–606 (2011).
[CrossRef]

Aitchison, J. S.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).

Alam, M. Z.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).

Alasag, S. G.

S. G. Alasag, N. Cansever, and M. M. Aslan, “Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers,” in Proc. SPIE8424, Nanophotonics IV, 84243A (2012).

Aslan, M. M.

S. G. Alasag, N. Cansever, and M. M. Aslan, “Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers,” in Proc. SPIE8424, Nanophotonics IV, 84243A (2012).

Bahrami, F.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).

Bahrami, J. S. A. F.

J. S. A. F. Bahrami and M. Mojahedi, “A highly optimized plasmon waveguide resonance biosensor,” in IEEE Photonics Conference (IEEE, 2012).
[CrossRef]

Bousmina, M.

Brown, B. J.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Brown, B. J. T.

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

Brown, M. F.

Z. Salamon, M. F. Brown, and G. Tollin, “Plasmon resonance spectroscopy: Probing molecular interactions within membranes,” Trends Biochem. Sci.24(6), 213–219 (1999).
[CrossRef] [PubMed]

Cansever, N.

S. G. Alasag, N. Cansever, and M. M. Aslan, “Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers,” in Proc. SPIE8424, Nanophotonics IV, 84243A (2012).

Chen, S. J.

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

Cheng, Q.

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

Chu, C. S.

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

Chyou, J. J.

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

Dyankov, G.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fielden, P. R.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

Goddard, N. J.

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron.20(9), 1718–1727 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

Homola, J.

Horvath, R.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B16(4), 1297–1311 (1977).
[CrossRef]

Larsen, N. B.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

Lin, C. Y.

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

Linman, M. J.

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

McDonnell, M.

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

McDonnell, M. B.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Mohr, S.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

Mojahedi, M.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).

J. S. A. F. Bahrami and M. Mojahedi, “A highly optimized plasmon waveguide resonance biosensor,” in IEEE Photonics Conference (IEEE, 2012).
[CrossRef]

Orosz, K. S.

Otto, A.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun.3(4), 254–258 (1971).
[CrossRef]

Pedersen, H. C.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

Piliarik, M.

Saavedra, S. S.

Salamon, Z.

Z. Salamon, M. F. Brown, and G. Tollin, “Plasmon resonance spectroscopy: Probing molecular interactions within membranes,” Trends Biochem. Sci.24(6), 213–219 (1999).
[CrossRef] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

Scott, G. D.

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B16(4), 1297–1311 (1977).
[CrossRef]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser and Photonics Reviews5(4), 571–606 (2011).
[CrossRef]

Shih, Z. H.

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Shu, C. F.

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

Skivesen, N.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

Sohler, W.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun.3(4), 254–258 (1971).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Takahashi, H.

Thinggaard, S.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

Tollin, G.

Z. Salamon, M. F. Brown, and G. Tollin, “Plasmon resonance spectroscopy: Probing molecular interactions within membranes,” Trends Biochem. Sci.24(6), 213–219 (1999).
[CrossRef] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zekriti, M.

Zhang, H.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zourob, M.

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron.20(9), 1718–1727 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biophys. J. (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron.20(9), 1718–1727 (2005).
[CrossRef] [PubMed]

Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance (1)

J. J. Chyou, S. J. Chen, C. F. Shu, C. S. Chu, Z. H. Shih, and C. Y. Lin, “Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance,” OPTICE44, 034001––034007 (2005).

Lab Chip (1)

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Laser and Photonics Reviews (1)

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser and Photonics Reviews5(4), 571–606 (2011).
[CrossRef]

Opt. Commun. (1)

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun.3(4), 254–258 (1971).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B16(4), 1297–1311 (1977).
[CrossRef]

Plasmonics (1)

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics8(2), 465–473 (2012).

Sens. Actuators B Chem. (4)

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. McDonnell, and N. J. Goddard, “The development of a metal clad leaky waveguide sensor for the detection of particles,” Sens. Actuators B Chem.90(1-3), 296–307 (2003).
[CrossRef]

Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers (1)

S. G. Alasag, N. Cansever, and M. M. Aslan, “Sensitivity enhancement of coupled plasmon-waveguide resonance sensors with gold-silver-alumina layers,” in Proc. SPIE8424, Nanophotonics IV, 84243A (2012).

Trends Biochem. Sci. (1)

Z. Salamon, M. F. Brown, and G. Tollin, “Plasmon resonance spectroscopy: Probing molecular interactions within membranes,” Trends Biochem. Sci.24(6), 213–219 (1999).
[CrossRef] [PubMed]

Other (6)

S. Janz, A. Densmore, D. X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki, G. Lopinski, A. Delâge, R. McKinnon, P. Cheben, and B. Lamontagne, “Silicon photonic wire waveguide sensors,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 229–264.

J. S. A. F. Bahrami and M. Mojahedi, “A highly optimized plasmon waveguide resonance biosensor,” in IEEE Photonics Conference (IEEE, 2012).
[CrossRef]

J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (A Bradford Book, 1992).

D. P. Edward, Handbook of Optical Constants of Solids (Academic Press, 1997).

http://www.ssens.nl/ .

T. Lebyedyeva, Y. Frolov, S. Kurlov, M. Budnyk, Y. Minov, P. Sutkovyi, and P. Shpylovyi, “Modeling and data processing for thin-film optical sensors,” in 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS (2011), 119–124.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the PWR sensor. (b) Reflectance spectrum for the optimized PWR-TM, PWR-TE, and SPR-TM polarizations in black, red, and blue lines, respectively. (c) z-component of the Poynting vector for both TM and TE polarizations in the optimized PWR sensor at the resonance angle of 62.35° and 66.18°, respectively. (d) z-component of the Poynting vector for the TM polarization in the optimized SPR sensor at the resonance angle of 63.77°.

Fig. 2
Fig. 2

(a) The CSF variation along with the incident light wavelength in the optimized SPR sensor. The CSF variation along with the silica thickness at different wavelengths in the PWR sensor for (b) TM and (c) TE polarizations.

Fig. 3
Fig. 3

Proposed optical setup for minimum position measurement.

Fig. 4
Fig. 4

The experimental normalized reflectance spectrum at λ = 632nm for (a) TM-polarized PWR sensor. (b) TE polarized PWR sensor. (c) TM-polarized SPR sensor. The theoretical normalized reflectance spectrum at λ = 632nm for (d) TM-polarized PWR sensor. (e) TE polarized PWR sensor. (f) TM-polarized SPR sensor. The different curves refer to reflectance spectrum for different concentrations of ethanol solution, 0.7% (red), 7% (blue). The water spectrum (black) is the reference.

Fig. 5
Fig. 5

The experimental normalized reflectance spectrum for (a) TM-polarized (black) and TE-polarized (blue) PWR sensor at λ = 830nm (b) TM-polarized SPR sensor at λ = 900nm. The theoretical normalized reflectance spectrum for (c) TM-polarized (black) and TE-polarized (blue) PWR sensor at λ = 830nm (d) TM-polarized SPR sensor at λ = 900nm.

Fig. 6
Fig. 6

Sensors’ responses to the bulk refractive index variations: (a) Resonance angle versus time for the TM-polarized PWR sensor at λ = 632nm, and 830nm (b) Resonance angle versus time for the TE-polarized PWR sensor at λ = 632nm, and 830nm (c) Resonance angle versus time for the TM-polarized SPR sensor at λ = 632nm, and 900nm. Sensors’ responses to the bulk refractive index variations with baseline adjusted to zero: (d) Resonance angle versus time for the TM-polarized PWR sensor at λ = 632nm, and 830nm (e) Resonance angle versus time for the TE-polarized PWR sensor at λ = 632nm, and 830nm (f) Resonance angle versus time for the TM-polarized SPR sensor at λ = 632nm, and 900nm. Solutions are based on (1) DI water, (2) 0.5% ethanol, (3) 1% ethanol (4) 2% ethanol.

Tables (5)

Tables Icon

Table 1 Comparison of the optimized PWR and SPR sensors’ characteristics

Tables Icon

Table 2 Comparison of the optimized PWR and SPR sensors’ characteristics with considering the limitations in the given setup

Tables Icon

Table 3 Experimental and theoretical sensors’ characteristics for the fabricated PWR and SPR sensors at λ = 632 nm

Tables Icon

Table 4 Experimental and theoretical sensors’ characteristics for the fabricated SPR Sensor at λ = 900 nm and the PWR sensor at λ = 830 nm

Tables Icon

Table 5 Experimental sensors’ characteristics calculated from the sensograms shown in Fig. 6

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CS F bulk =SF×SM= θ res n b × R max R min FWHM 1 σ RI .
σ RI σ SO SF = 1 SNR .

Metrics