Abstract

We investigate the polarization-mode dispersion (PMD) effect of zero padding OFDM (ZP-OFDM) in direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems. We first study the conventional equalization method for ZP-OFDM. Then an equalization method based on sorted QR decomposition is proposed to further improve the performance. It is found that the performance improvement of ZP-OFDM is due to the frequency domain oversampling (FDO) induced inter-carrier interference (ICI). Numerical simulation results show that compared with cyclic prefix OFDM (CP-OFDM), ZP-OFDM has a significantly higher tolerance to PMD in DDO-OFDM systems when the channel spectral nulls occur at certain differential group delay (DGD) values.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving performance of channel equalization in RSOA-based WDM-PON by QR decomposition

Xiang Li, Wen-De Zhong, Arokiaswami Alphones, Changyuan Yu, and Zhaowen Xu
Opt. Express 23(21) 27299-27305 (2015)

Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes

Ivan B. Djordjevic, Lei Xu, and Ting Wang
Opt. Express 16(14) 10269-10278 (2008)

Experimental demonstration of non-iterative interpolation-based partial ICI compensation in100G RGI-DP-CO-OFDM transport systems

Mohammad E. Mousa-Pasandi, Qunbi Zhuge, Xian Xu, Mohamed M. Osman, Ziad A. El-Sahn, Mathieu Chagnon, and David V. Plant
Opt. Express 20(14) 14825-14832 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and I. B. Djordjevic, OFDM for Optical Communications. New York: Academic, 2010.
  2. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
    [Crossref] [PubMed]
  3. X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
    [Crossref]
  4. W.-R. Peng, H. Takahashi, I. Morita, and H. Tanaka, “Transmission of a 214-Gb/s single-polarization direct-detection optical OFDM superchannel over 720-km standard single mode fiber with EDFA-only amplification,” European Conference on Optical Communications, Paper PDP 2.5.Turin, Italy (2010).
  5. W.-R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of High-Speed (>100 Gb/s) Direct-Detection Optical OFDM Superchannel,” J. Lightwave Technol. 30(12), 2025–2034 (2012).
    [Crossref]
  6. C.-Y. Wang, C.-C. Wei, C.-T. Lin, and S. Chi, “Direct-detection polarization division multiplexed orthogonal frequency-division multiplexing transmission systems without polarization tracking,” Opt. Lett. 37(24), 5070–5072 (2012).
    [PubMed]
  7. N. Cvijetic, S. G. Wilson, and D. Qian, “System Outage Probability Due to PMD in High-Speed Optical OFDM Transmission,” J. Lightwave Technol. 26(14), 2118–2127 (2008).
    [Crossref]
  8. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Impact of PMD in single-receiver and polarization-diverse direct-detection optical OFDM,” J. Lightwave Technol. 27(14), 2792–2799 (2009).
    [Crossref]
  9. M. Mayrock and H. Haunstein, “PMD tolerant direct-detection optical OFDM System”, European Conference on Optical Communications, Paper Tu.5.2.5, Berlin, Germany (2007).
  10. B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
    [Crossref]
  11. G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD: Johns Hopkins Univ, Press, 1996.
  12. OptiSystem Version 10.0 Available: http://www.optiwave.com/ .

2012 (2)

2009 (1)

2008 (2)

2007 (1)

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

2002 (1)

B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[Crossref]

Armstrong, J.

Chi, S.

Cvijetic, N.

de Courville, M.

B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[Crossref]

Duhaamel, O.

B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[Crossref]

Giannakis, G. B.

B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[Crossref]

Lin, C.-T.

Lowery, A. J.

Ma, Y.

Morita, I.

Muquet, B.

B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[Crossref]

Peng, W.-R.

Qian, D.

Schmidt, B. J. C.

Shieh, W.

Takahashi, H.

Tang, Y.

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

Tsuritani, T.

Wang, C.-Y.

Wang, Z.

B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[Crossref]

Wei, C.-C.

Wilson, S. G.

Yang, Q.

Yi, X.

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

IEEE Trans. Commun. (1)

B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and O. Duhaamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (1)

Other (5)

M. Mayrock and H. Haunstein, “PMD tolerant direct-detection optical OFDM System”, European Conference on Optical Communications, Paper Tu.5.2.5, Berlin, Germany (2007).

W. Shieh and I. B. Djordjevic, OFDM for Optical Communications. New York: Academic, 2010.

W.-R. Peng, H. Takahashi, I. Morita, and H. Tanaka, “Transmission of a 214-Gb/s single-polarization direct-detection optical OFDM superchannel over 720-km standard single mode fiber with EDFA-only amplification,” European Conference on Optical Communications, Paper PDP 2.5.Turin, Italy (2010).

G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD: Johns Hopkins Univ, Press, 1996.

OptiSystem Version 10.0 Available: http://www.optiwave.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

OFDM symbol frames for ZP-OFDM.

Fig. 2
Fig. 2

Schematic of CP-(or ZP-)OFDM system subject to first-order PMD. S-to-P: serial-to-parallel, P-to-S: parallel-to-serial, PD: photodetector, MZM: Mach-Zehnder modulator, DAC: digital-to-analog converter, ADC: analog-to-digital converter.

Fig. 3
Fig. 3

(a) BER performance of CP-OFDM, ZP-OFDM and ZP-OFDM-sQR for several DGD values; (b)-(e) OFDM QPSK RF spectra at DGD values of (b) 0, (c) 15ps, (d) 20 ps, (e) 100ps.

Fig. 4
Fig. 4

BER performance at several DGD values versus Eb/N0 for ZP-OFDM with U = 68, 72 and 128.

Fig. 5
Fig. 5

BER performance of CP- OFDM, ZP-OFDM-sQR and ZP-OFDM with U = 68, 72 and 128 versus DGD when Eb/N0 is 30 dB.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

x ˜ zp ( i )=H F zp S N ( i )+ H ISI F zp S N ( i1 )+ n ˜ p ( i )
x ˜ zp ( i )=H F zp S N ( i )+ n ˜ p ( i )
x ˜ U ( i )= x ˜ u ( i )+[ x ˜ l ( i ) 0 (2U-P)×1 ]=( H u +[ H l 0 (2U-P)×U ] ) s ˜ u ( i ) = H U s ˜ u ( i )= H U [ F N , 0 N×(U-N) ] H S N ( i )
X U ( i )= F U x ˜ U ( i )=Diag( h ˜ U ) F U [ F N , 0 N×(UN) ] H S N ( i )
S N ZP ( i )= [ Diag( h ˜ U ) F U [ F N , 0 N×(UN) ] H ] X U ( i )= [ M U ] X U ( i )
S N CP ( i )= [ Diag( h ˜ N ) ] 1 X N ( i )
X U ( i )= M U S N ( i )=QR S N ( i )
X ˜ U ( i )= Q H X U ( i )=R S N ( i )
X ˜ U k ( i )= r k,k S N k ( i )+ m=k+1 N r k,m S N m ( i )
S N k = X ˜ U k ( i ) m=k+1 N r k,m S N m ( i ) r k,k

Metrics