Abstract

We demonstrate a hitless wavelength-selective switch (WSS) based on InGaAs/InAlAs five-layer asymmetric coupled quantum well (FACQW) quadruple series-coupled microring resonators. The WSS is driven by the electric-field-induced change in refractive index in the FACQW core layer caused by the quantum-confined Stark effect (QCSE) for high-speed operation. The WSS with high-mesa waveguides is fabricated on a molecular beam epitaxy-grown wafer by dry etching. The fabricated WSS consists of four microrings, each with a round-trip length of 350 μm and five directional couplers with shallow grooves. A boxlike spectral response and hitless switching with higher extinction ratios than a double series-coupled microring resonator are successfully demonstrated. In addition, we propose the improvement of switching characteristics by controlling the coupling efficiencies at the directional couplers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
    [CrossRef]
  2. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005).
    [CrossRef]
  3. Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
    [CrossRef]
  4. T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
    [CrossRef]
  5. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
    [CrossRef]
  6. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007).
    [CrossRef] [PubMed]
  7. Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
    [CrossRef]
  8. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
    [CrossRef]
  9. T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
    [CrossRef]
  10. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezisa, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
    [CrossRef]
  11. S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
    [CrossRef]
  12. T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
    [CrossRef]
  13. J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
    [CrossRef]
  14. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
    [CrossRef]
  15. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
    [CrossRef]
  16. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
    [CrossRef] [PubMed]
  17. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
    [CrossRef]
  18. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009).
    [CrossRef] [PubMed]
  19. T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
    [CrossRef]
  20. X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
    [CrossRef]
  21. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
    [CrossRef]
  22. T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6(6), 743–757 (1988).
    [CrossRef]
  23. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
    [CrossRef]
  24. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
    [CrossRef]
  25. R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
    [CrossRef]
  26. H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
    [CrossRef]
  27. S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express20(14), 15610–15627 (2012).
    [CrossRef] [PubMed]
  28. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).
  29. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
    [CrossRef] [PubMed]
  30. H. Kamiya, T. Goto, K. Redouane, T. Arakawa, and Y. Kokubun, “First Demonstration of Hitless Wavelength Selective Switch Based on Quadruple Series Coupled Multiple Quantum Well Microring Resonator,” Optical Fiber Communication Conference and Exposition/The National Fiber Optic Engineers Conference (OFC/NOOEC 2013), OW1C.5 (2013).
    [CrossRef]
  31. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
    [CrossRef]
  32. T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
    [CrossRef]
  33. G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
    [CrossRef]
  34. R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
    [CrossRef]
  35. C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
    [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics, 7th Edition (Cambridge University Press, 1999), p.838.
  37. T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
    [CrossRef]
  38. T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
    [CrossRef]
  39. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
    [CrossRef]
  40. T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
    [CrossRef]
  41. T. Tatewaki and Y. Kokubun, “Origin of UV sensitivity of SiON film and bidirectional UV trimming of SiON microring resonator,” Jpn. J. Appl. Phys.49(7), 072201 (2010).
    [CrossRef]

2013 (1)

2012 (5)

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express20(14), 15610–15627 (2012).
[CrossRef] [PubMed]

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).

2011 (2)

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
[CrossRef]

2010 (2)

T. Tatewaki and Y. Kokubun, “Origin of UV sensitivity of SiON film and bidirectional UV trimming of SiON microring resonator,” Jpn. J. Appl. Phys.49(7), 072201 (2010).
[CrossRef]

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

2009 (2)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezisa, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009).
[CrossRef] [PubMed]

2008 (2)

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

2007 (5)

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007).
[CrossRef] [PubMed]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

2006 (4)

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

2005 (2)

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005).
[CrossRef]

2004 (3)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

2003 (1)

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

2002 (2)

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

2000 (1)

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

1998 (1)

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

1996 (1)

C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
[CrossRef]

1995 (2)

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

1988 (1)

T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6(6), 743–757 (1988).
[CrossRef]

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Alameh, K.

Amatya, R.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Amma, Y.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

Arakawa, T.

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
[CrossRef] [PubMed]

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
[CrossRef]

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Armenise, M. N.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Baker, N.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Barbarossa, G.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Bogris, A.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Calhoun, L. C.

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

Chang, S.-J.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Chen, Y.-J.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Chu, C.-H.

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Datta, A.

Driessen, A.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Emelett, S. J.

Feng, H.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Feng, S.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Fukuoka, M.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

Geuzebroek, D.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Goebuchi, Y.

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Goto, T.

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
[CrossRef] [PubMed]

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).

Gotoh, T.

Grover, R.

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Hariki, T.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

Hasegawa, R.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Hibino, Y.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Himeno, A.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Ho, P.-T.

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Holzwarth, C. W.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Hu, T.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Ibrahim, T. A.

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Ide, T.

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Ikehara, H.

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
[CrossRef] [PubMed]

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).

Jiang, X.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Kamiya, H.

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
[CrossRef] [PubMed]

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).

Kanakaraju, S.

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

Kato, T.

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

Kelderman, H.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Khan, M. H.

Kim, D.-H.

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Klein, E.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Kokubun, Y.

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
[CrossRef] [PubMed]

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).

T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
[CrossRef]

T. Tatewaki and Y. Kokubun, “Origin of UV sensitivity of SiON film and bidirectional UV trimming of SiON microring resonator,” Jpn. J. Appl. Phys.49(7), 072201 (2010).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

Kriezisa, E. E.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezisa, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

Kwong, D.-L.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Lee, S.-S.

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

Lee, Y. T.

Li, C.

Liow, T.-Y.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Lipson, M.

Lira, H. L. R.

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Lo, G.-Q.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Lucas, L.

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

Luo, X.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Madsen, C. K.

C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
[CrossRef]

Makino, T.

Manipatruni, S.

Matteo, A. M.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Mizuno, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Nakano, Y.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Ni, C.-Y.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Oguma, M.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Orta, R.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Pang, J. P.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Poon, A. W.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
[CrossRef] [PubMed]

Qi, M.

Qiu, C.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Qiu, H.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Ram, R. J.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Raptis, N.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Rascone, R.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Ravindran, S.

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Savi, P.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Shen, H.

Shibata, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Simos, H.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Smith, H. I.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Song, J.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Song, J.-H.

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

Soref, R.

Sugiyama, M.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Suzuki, K.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Suzuki, S.

Syvridis, D.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Tada, K.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Takahashi, H.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Tatewaki, T.

T. Tatewaki and Y. Kokubun, “Origin of UV sensitivity of SiON film and bidirectional UV trimming of SiON microring resonator,” Jpn. J. Appl. Phys.49(7), 072201 (2010).
[CrossRef]

Toya, T.

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Trinchero, D.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Tsilipakos, O.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezisa, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

Ushigome, M.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Wang, T.-J.

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

Wang, W.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Wang, Z.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Wilson, R. A.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Wood, T. H.

T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6(6), 743–757 (1988).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Xiao, S.

Yamagata, S.

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

Yamaguchi, K.

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Yanagase, Y.

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

Yang, J.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Yioultsis, T. V.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezisa, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

Yu, M.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Yu, P.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
[CrossRef]

Zhao, Y.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Zhou, L.

Appl. Phys. Lett. (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Electron. Lett. (1)

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators (1)

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS), Th-S24–O07 (2012).

IEEE J. Quantum Electron. (1)

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (14)

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A Compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

J. Appl. Phys. (1)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezisa, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

J. Lightwave Technol. (8)

T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
[CrossRef]

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005).
[CrossRef]

C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
[CrossRef]

T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol.6(6), 743–757 (1988).
[CrossRef]

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (6)

T. Tatewaki and Y. Kokubun, “Origin of UV sensitivity of SiON film and bidirectional UV trimming of SiON microring resonator,” Jpn. J. Appl. Phys.49(7), 072201 (2010).
[CrossRef]

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

Opt. Express (5)

Phys. Rev. Lett. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Other (2)

H. Kamiya, T. Goto, K. Redouane, T. Arakawa, and Y. Kokubun, “First Demonstration of Hitless Wavelength Selective Switch Based on Quadruple Series Coupled Multiple Quantum Well Microring Resonator,” Optical Fiber Communication Conference and Exposition/The National Fiber Optic Engineers Conference (OFC/NOOEC 2013), OW1C.5 (2013).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 7th Edition (Cambridge University Press, 1999), p.838.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Calculation model for transfer function of quadruple series-coupled ring resonator.

Fig. 2
Fig. 2

Schematic top view of second-order series-coupled microring WSS and its design parameters. l1 to l4 are coupling lengths of couplers C1 to C4, respectively.

Fig. 3
Fig. 3

Schematic cross-sectional views of (a) waveguide and (b) coupling regions.

Fig. 4
Fig. 4

Theoretical switching characteristics at drop port of proposed WSS, assuming that electric-field-induced change in refractive index of FACQW core layer is 0.0017.

Fig. 5
Fig. 5

(a) Microscopy image of top side of fabricated WSS. (b) Scanning electron microscopy image of sidewall of waveguide.

Fig. 6
Fig. 6

(a) Schematic single-microring resonator used for evaluating electric-field-inducud change in refractive index in core layer of microring and change in coupling efficiency in directional coupler. (b) Evaluated change in refractive index in core layer of microring waveguide Δncore at various wavelengths in region around 1550 nm as a function of applied dc reverse voltage Va.

Fig. 7
Fig. 7

(a) Measured through-port and drop-port spectral responses of WSS for TE-polarized input light without reverse voltages. (b) Comparison of measured through-port spectral responses of quadruple and double series-coupled microring resonators and single-microring resonator.

Fig. 8
Fig. 8

Measured wavelength-switching characteristics of drop-port spectral response of WSS.

Fig. 9
Fig. 9

Change in depth of dip at resonant wavelength in through-port spectral response of single microring when reverse voltages are applied to busline.

Fig. 10
Fig. 10

(a) Change in depth of dip at resonant wavelength in through-port spectral response of single microring when reverse voltages are applied to busline. (b) Evaluated dependence of coupling efficiencies Ks1 and Ks2 of single-microring resonator on applied reverse voltage.

Fig. 11
Fig. 11

SEM image of cross section of coupler between microring and busline in fabricated single-microring resonator.

Fig. 12
Fig. 12

Switching characteristics calculated using transfer matrix method, considering dependence of coupling efficiencies on applied voltage shown in Fig. 10(b).

Fig. 13
Fig. 13

(a) Measured wavelength-switching characteristics of drop-port spectral response of WSS after improvement of loss in final ON state and extinction ratio in OFF state. (b) Magnified spectrum of (a) for (V1, V2, V3, V4, VThrough, VDrop) = (0, −4, −12, −12, 0, 0) and (0, −4, −12, −12, −12, 0) in V.

Tables (1)

Tables Icon

Table 1 Designed Parameters for Designed WSS

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ E A E D ]= C 5 R 4 1 C 4 R 3 C 3 R 2 1 C 2 R 1 C 1 [ E I E T ] =[ M 11 M 12 M 21 M 22 ][ E I E T ],
C N =j[ 1 K N K N 1 η K N η K N 1 K N K N ], (N: odd integer)
C N =j[ 1 K N K N η K N 1 η K N 1 K N K N ],  (N: even integer)
R i =[ 1 a exp( jβ L i 2 ) 0 0 a exp( jβ L i 2 ) ],
E T E I = M 11 M 12 .
E D E I = M 12 M 21 M 11 M 22 M 12 .
K 2 = K 4 = ( 2 1) 4 K 1 2 ,
K 3 = (32 2 ) 4 K 1 2 .

Metrics