Abstract

Designing photonic crystal cavities with high quality factors and low mode volumes is of great importance for maximizing interactions of light and matter in metamaterials. Previous work on photonic crystal cavities has revealed dramatic improvements in performance by fine-tuning the device design. In L3 cavities, slight shifts of the holes on the edge of the cavity have been found to greatly increase quality factors without significantly altering the mode volume. Here we demonstrate utilizing a nature inspired search algorithm to efficiently explore a large parameter space. The results converge upon a new cavity model with a high quality factor to mode volume ratio (Q/V = 798,000 (λ/n)−3).

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Genetic optimization of photonic bandgap structures

Joel Goh, Ilya Fushman, Dirk Englund, and Jelena Vučković
Opt. Express 15(13) 8218-8230 (2007)

Confinement of band-edge modes in a photonic crystal slab

Frédéric Bordas, M. J. Steel, Christian Seassal, and Adel Rahmani
Opt. Express 15(17) 10890-10902 (2007)

Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities

Michael Barth, Josef Kouba, Johannes Stingl, Bernd Löchel, and Oliver Benson
Opt. Express 15(25) 17231-17240 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Maede, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [Crossref] [PubMed]
  3. J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
    [Crossref] [PubMed]
  4. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  5. B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
    [Crossref]
  6. Z. Lin and J. Vučković, “Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities,” Phys. Rev. B 81(3), 035301 (2010).
    [Crossref]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  8. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512 (2003).
    [Crossref]
  10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [Crossref] [PubMed]
  11. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Prentice Hall, 2009).
  12. G. S. Hornby, J. D. Lohn, and D. S. Linden, “Computer-Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Evol. Comput. 19(1), 1–23 (2011).
    [Crossref] [PubMed]
  13. E. Bonabeau, G. Theraulaz, and M. Dorigo, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, Oxford, 1999).
  14. A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008).
    [Crossref] [PubMed]
  15. S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
    [Crossref]
  16. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
    [Crossref] [PubMed]
  17. A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
    [Crossref]
  18. E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).
    [Crossref]
  19. S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems, 5th ed. (Brooks Cole, 2003).
  20. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a diectric cavity,” IEEE Proc. Optoelectron. 145, 391 (1998).
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  22. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron. 39(4-6), 341–352 (2007).
    [Crossref]

2013 (1)

J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
[Crossref] [PubMed]

2011 (3)

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

G. S. Hornby, J. D. Lohn, and D. S. Linden, “Computer-Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Evol. Comput. 19(1), 1–23 (2011).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
[Crossref] [PubMed]

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Z. Lin and J. Vučković, “Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities,” Phys. Rev. B 81(3), 035301 (2010).
[Crossref]

2009 (2)

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
[Crossref]

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).
[Crossref]

2008 (1)

2007 (1)

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron. 39(4-6), 341–352 (2007).
[Crossref]

2005 (2)

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

2004 (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

2003 (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512 (2003).
[Crossref]

Arbenz, P.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron. 39(4-6), 341–352 (2007).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512 (2003).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Avniel, Y.

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Boyd, S.

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
[Crossref]

Chen, W.

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

Chinellato, O.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron. 39(4-6), 341–352 (2007).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Farjadpour, A.

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
[Crossref]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Gondarenko, A.

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Hornby, G. S.

G. S. Hornby, J. D. Lohn, and D. S. Linden, “Computer-Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Evol. Comput. 19(1), 1–23 (2011).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jiang, B.

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Lee, J.

J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
[Crossref] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Lin, C.

Lin, Z.

Z. Lin and J. Vučković, “Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities,” Phys. Rev. B 81(3), 035301 (2010).
[Crossref]

Linden, D. S.

G. S. Hornby, J. D. Lohn, and D. S. Linden, “Computer-Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Evol. Comput. 19(1), 1–23 (2011).
[Crossref] [PubMed]

Lipson, H.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Lipson, M.

A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008).
[Crossref] [PubMed]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Liu, A. J.

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

Lohn, J. D.

G. S. Hornby, J. D. Lohn, and D. S. Linden, “Computer-Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Evol. Comput. 19(1), 1–23 (2011).
[Crossref] [PubMed]

Martin, A. J.

J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
[Crossref] [PubMed]

Millunchick, J. M.

J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
[Crossref] [PubMed]

Mutapcic, A.

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
[Crossref]

Nezamabadi-pour, H.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512 (2003).
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Povinelli, M. L.

Preble, S.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Rashedi, E.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).
[Crossref]

Römer, F.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron. 39(4-6), 341–352 (2007).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Saryazdi, S.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).
[Crossref]

Saucer, T. W.

J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
[Crossref] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Sih, V.

J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
[Crossref] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512 (2003).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vuckovic, J.

Z. Lin and J. Vučković, “Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities,” Phys. Rev. B 81(3), 035301 (2010).
[Crossref]

Witzigmann, B.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron. 39(4-6), 341–352 (2007).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Zhang, Y. J.

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

Zheng, W. H.

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

Zhou, W. J.

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

Appl. Phys. Lett. (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512 (2003).
[Crossref]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Chin. Phys. B (1)

B. Jiang, Y. J. Zhang, W. J. Zhou, W. Chen, A. J. Liu, and W. H. Zheng, “Spontaneous-emission control by local density of states of photonic crystal cavity,” Chin. Phys. B 20(2), 024208 (2011).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Eng. Optim. (1)

A. Mutapcic, S. Boyd, A. Farjadpour, S. G. Johnson, and Y. Avniel, “Robust design of slow-light tapers in periodic waveguides,” Eng. Optim. 41(4), 365–384 (2009).
[Crossref]

Evol. Comput. (1)

G. S. Hornby, J. D. Lohn, and D. S. Linden, “Computer-Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Evol. Comput. 19(1), 1–23 (2011).
[Crossref] [PubMed]

Inf. Sci. (1)

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).
[Crossref]

Nature (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Quantum Electron. (1)

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver,” Opt. Quantum Electron. 39(4-6), 341–352 (2007).
[Crossref]

Phys. Rev. B (1)

Z. Lin and J. Vučković, “Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities,” Phys. Rev. B 81(3), 035301 (2010).
[Crossref]

Phys. Rev. Lett. (1)

J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-Resolved Two-Pulse Excitation of Quantum Dots Coupled to a Photonic Crystal Cavity in the Purcell Regime,” Phys. Rev. Lett. 110(1), 013602 (2013).
[Crossref] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Other (5)

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Prentice Hall, 2009).

J. D. Joannopoulos, R. D. Maede, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

E. Bonabeau, G. Theraulaz, and M. Dorigo, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, Oxford, 1999).

S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems, 5th ed. (Brooks Cole, 2003).

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a diectric cavity,” IEEE Proc. Optoelectron. 145, 391 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Photonic crystal cavity design parameters. The basic L3 design is modified by shifting the edge holes labeled “A” symmetrically along the x direction. Holes B and C are allowed to shift in both the x and y directions. All labeled holes are allowed to vary in radius.

Fig. 2
Fig. 2

Evolution of the hole radius, rA, and Q/V ratio through the simulation. After approximately 200 iterations results begin to converge upon optimized solution. Horizontal line in Q/V represents benchmark for comparison.

Fig. 3
Fig. 3

a) Electric field (Ey) mode profile for our final design parameters and b) the L3 cavity with 0.15a shift, which is our benchmark.

Tables (1)

Tables Icon

Table 1 Optimized design parameters for cavity with Q/V = 798,000 (λ/n)−3

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s i,1 r A r min r max r min , s i,2 r B r min r max r min
m i = f( s i ) f min j [ f( s j ) f min ] +δm
s ¨ i = ji G m j | s j s i | ( s j s i )
V mode = ϵ (r) | E(r) | 2 dr max( ϵ(r) | E(r) | 2 )

Metrics