Abstract

A new type of flexible cholesteric liquid crystal mirror is presented. The simple and effective method for the deposition of a cholesteric mixture on a paper substrate and the particular design of the device give a homogeneous alignment of the cholesteric texture providing mirrors with an intense and uniform light reflectance. A desired polarization state for the reflected light, linear or circular, can be easily obtained varying the thickness and optical anisotropy of the polymer cover film. By using non-azobenzene based photosensitive materials a permanent array of RGB mirrors with high reflectivity can be obtained on the same device. Paper like reflective mirrors are versatile and they can find applications in reflective displays, adaptive optics, UV detectors and dosimeters, information recording, medicine and IR converters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Yang D-K, ” Cholesteric liquid crystal/polymer gel dispersions: reflective displays,” Proc SID Int Symp Dig Tech Papers23, 759–762 (1992).
  2. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
    [CrossRef]
  3. H. Coles, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, “Chiral Nematics: Physical Properties and Applications,” in Handbook of Liquid Crystals Set (Wiley-VCH Verlag GmbH, 2008), pp. 335–409.
  4. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
    [CrossRef] [PubMed]
  5. D. J. Dyer, U. P. Schröder, K. P. Chan, and R. J. Twieg, “Polymer-Stabilized Reflective Cholesteric Displays: Effects of Chiral Polymer Networks on Reflectance Properties,” Chem. Mater.9(7), 1665–1669 (1997).
    [CrossRef]
  6. G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric Emulsions for Colored Displays,” Adv. Mater.17(9), 1150–1152 (2005).
    [CrossRef]
  7. T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
    [CrossRef]
  8. D.-K. Y. Shin-Tson Wu, Reflective Liquid Cystal Displays (Wiley, Chichester, 2002)
  9. R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).
  10. I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, and J. W. Doane, “50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable,” SID Symposium Digest of Technical Papers36, 1556–1559 (2005).
    [CrossRef]
  11. E. Montbach, D. J. Davis, A. Khan, T. Schneider, D. Marhefka, O. Pishnyak, T. Ernst, N. Miller, and J. W. Doane, “Novel flexible Reflex displays,” Proc. SPIE 7232 Emerging Liquid Crystal Technologies IV, 7232203 (2009).
  12. A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection with Cholesteric Liquid Crystals Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors (Basel)10(5), 4887–4897 (2010).
    [CrossRef] [PubMed]
  13. G. M. Zharkova and V. N. Kovrizhina, “Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment,” J. Eng. Phys. Thermophy.83(6), 1136–1148 (2010).
    [CrossRef]
  14. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Nonlinear optical properties of fast, photoswitchable cholesteric liquid crystal bandgaps,” Opt. Mater. Express1(5), 943–952 (2011).
    [CrossRef]
  15. W. Haas, J. Adams, and J. Wysocki, “Interaction Between UV Radiation and Cholesteric Liquid Crystals,” Mol. Cryst.7(1), 371–379 (1969).
    [CrossRef]
  16. E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
    [CrossRef]
  17. H. Rau, “Photoisomerization of azobenzenes,” Photochem. Photophys.2, 119–141 (1990).
  18. K. Shirota, K. Tachibana, and I. Yamaguchi, “Optical control of the pitch in cholesteric liquid crystals,” Proc. SPIE3740Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 372–375 (1999).
  19. N. Tamaoki, “Cholesteric Liquid Crystals for Color Information Technology,” Adv. Mater.13(15), 1135–1147 (2001).
    [CrossRef]
  20. A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light Induced Effects In Cholesteric Mixtures With A Photosensitive Nematic Host,” Mol. Crys. Liq. Crys.409(1), 209–218 (2004).
    [CrossRef]
  21. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
    [CrossRef]
  22. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Adv. Mater.19(20), 3244–3247 (2007).
    [CrossRef]
  23. S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
    [CrossRef]
  24. G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
    [CrossRef] [PubMed]
  25. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).
  26. N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Thermally stable photoalignment layer of a novel photo-crosslinkable polymethacrylate for liquid crystal display,” Jpn. J. Appl. Phys.40(Part 2, No. 3A), L209–L211 (2001).
    [CrossRef]
  27. M. D. Robinson, G. Sharp, and J. Chen, Polarization engineering for LCD projection (Wiley, 2005), Vol. 4.
  28. K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).
  29. M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett.88, 061110 (2006).

2011

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Nonlinear optical properties of fast, photoswitchable cholesteric liquid crystal bandgaps,” Opt. Mater. Express1(5), 943–952 (2011).
[CrossRef]

G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
[CrossRef] [PubMed]

2010

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection with Cholesteric Liquid Crystals Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors (Basel)10(5), 4887–4897 (2010).
[CrossRef] [PubMed]

G. M. Zharkova and V. N. Kovrizhina, “Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment,” J. Eng. Phys. Thermophy.83(6), 1136–1148 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

2009

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

2008

S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
[CrossRef]

2007

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

2006

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett.88, 061110 (2006).

2005

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric Emulsions for Colored Displays,” Adv. Mater.17(9), 1150–1152 (2005).
[CrossRef]

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

2004

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light Induced Effects In Cholesteric Mixtures With A Photosensitive Nematic Host,” Mol. Crys. Liq. Crys.409(1), 209–218 (2004).
[CrossRef]

2001

N. Tamaoki, “Cholesteric Liquid Crystals for Color Information Technology,” Adv. Mater.13(15), 1135–1147 (2001).
[CrossRef]

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Thermally stable photoalignment layer of a novel photo-crosslinkable polymethacrylate for liquid crystal display,” Jpn. J. Appl. Phys.40(Part 2, No. 3A), L209–L211 (2001).
[CrossRef]

1997

D. J. Dyer, U. P. Schröder, K. P. Chan, and R. J. Twieg, “Polymer-Stabilized Reflective Cholesteric Displays: Effects of Chiral Polymer Networks on Reflectance Properties,” Chem. Mater.9(7), 1665–1669 (1997).
[CrossRef]

1994

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

1990

H. Rau, “Photoisomerization of azobenzenes,” Photochem. Photophys.2, 119–141 (1990).

1971

E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
[CrossRef]

1969

W. Haas, J. Adams, and J. Wysocki, “Interaction Between UV Radiation and Cholesteric Liquid Crystals,” Mol. Cryst.7(1), 371–379 (1969).
[CrossRef]

Adams, J.

W. Haas, J. Adams, and J. Wysocki, “Interaction Between UV Radiation and Cholesteric Liquid Crystals,” Mol. Cryst.7(1), 371–379 (1969).
[CrossRef]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Nonlinear optical properties of fast, photoswitchable cholesteric liquid crystal bandgaps,” Opt. Mater. Express1(5), 943–952 (2011).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

Chan, K. P.

D. J. Dyer, U. P. Schröder, K. P. Chan, and R. J. Twieg, “Polymer-Stabilized Reflective Cholesteric Displays: Effects of Chiral Polymer Networks on Reflectance Properties,” Chem. Mater.9(7), 1665–1669 (1997).
[CrossRef]

Chanishvili, A.

S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light Induced Effects In Cholesteric Mixtures With A Photosensitive Nematic Host,” Mol. Crys. Liq. Crys.409(1), 209–218 (2004).
[CrossRef]

Chidichimo, G.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric Emulsions for Colored Displays,” Adv. Mater.17(9), 1150–1152 (2005).
[CrossRef]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Chilaya, G.

S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light Induced Effects In Cholesteric Mixtures With A Photosensitive Nematic Host,” Mol. Crys. Liq. Crys.409(1), 209–218 (2004).
[CrossRef]

Clark, N. A.

G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
[CrossRef] [PubMed]

Cui, H.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

De Santo, M. P.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

De?Filpo, G.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric Emulsions for Colored Displays,” Adv. Mater.17(9), 1150–1152 (2005).
[CrossRef]

Dickert, F. L.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection with Cholesteric Liquid Crystals Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors (Basel)10(5), 4887–4897 (2010).
[CrossRef] [PubMed]

Doane, J. W.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, and J. W. Doane, “50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable,” SID Symposium Digest of Technical Papers36, 1556–1559 (2005).
[CrossRef]

Dyer, D. J.

D. J. Dyer, U. P. Schröder, K. P. Chan, and R. J. Twieg, “Polymer-Stabilized Reflective Cholesteric Displays: Effects of Chiral Polymer Networks on Reflectance Properties,” Chem. Mater.9(7), 1665–1669 (1997).
[CrossRef]

Fang, G.

G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
[CrossRef] [PubMed]

Fritz, W. J.

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

Green, S.

I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, and J. W. Doane, “50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable,” SID Symposium Digest of Technical Papers36, 1556–1559 (2005).
[CrossRef]

Gu, M.

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett.88, 061110 (2006).

Haas, W.

W. Haas, J. Adams, and J. Wysocki, “Interaction Between UV Radiation and Cholesteric Liquid Crystals,” Mol. Cryst.7(1), 371–379 (1969).
[CrossRef]

Hewitt, R.

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Nonlinear optical properties of fast, photoswitchable cholesteric liquid crystal bandgaps,” Opt. Mater. Express1(5), 943–952 (2011).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

Huang, L.

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

Jang, W.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

Kawatsuki, N.

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Thermally stable photoalignment layer of a novel photo-crosslinkable polymethacrylate for liquid crystal display,” Jpn. J. Appl. Phys.40(Part 2, No. 3A), L209–L211 (2001).
[CrossRef]

Khan, A.

I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, and J. W. Doane, “50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable,” SID Symposium Digest of Technical Papers36, 1556–1559 (2005).
[CrossRef]

Kim, K. Y.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

Kim, S. N.

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

Kovrizhina, V. N.

G. M. Zharkova and V. N. Kovrizhina, “Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment,” J. Eng. Phys. Thermophy.83(6), 1136–1148 (2010).
[CrossRef]

Kurihara, S.

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

Lavrentovich, O. D.

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett.88, 061110 (2006).

Lieberzeit, P. A.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection with Cholesteric Liquid Crystals Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors (Basel)10(5), 4887–4897 (2010).
[CrossRef] [PubMed]

Maclennan, J. E.

G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
[CrossRef] [PubMed]

Magyar, G.

I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, and J. W. Doane, “50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable,” SID Symposium Digest of Technical Papers36, 1556–1559 (2005).
[CrossRef]

Moritsugu, M.

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

Mujahid, A.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection with Cholesteric Liquid Crystals Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors (Basel)10(5), 4887–4897 (2010).
[CrossRef] [PubMed]

Nicoletta, F. P.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric Emulsions for Colored Displays,” Adv. Mater.17(9), 1150–1152 (2005).
[CrossRef]

Nonaka, T.

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

O'Ferrall, C. E.

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

Ogata, T.

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

Park, J. R.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

Park, O. O.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

Petriashvili, G.

S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light Induced Effects In Cholesteric Mixtures With A Photosensitive Nematic Host,” Mol. Crys. Liq. Crys.409(1), 209–218 (2004).
[CrossRef]

Rau, H.

H. Rau, “Photoisomerization of azobenzenes,” Photochem. Photophys.2, 119–141 (1990).

Sackmann, E.

E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
[CrossRef]

Schröder, U. P.

D. J. Dyer, U. P. Schröder, K. P. Chan, and R. J. Twieg, “Polymer-Stabilized Reflective Cholesteric Displays: Effects of Chiral Polymer Networks on Reflectance Properties,” Chem. Mater.9(7), 1665–1669 (1997).
[CrossRef]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Nonlinear optical properties of fast, photoswitchable cholesteric liquid crystal bandgaps,” Opt. Mater. Express1(5), 943–952 (2011).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

Shashidhar, R.

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

Shi, Y.

G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
[CrossRef] [PubMed]

Shirota, K.

K. Shirota, K. Tachibana, and I. Yamaguchi, “Optical control of the pitch in cholesteric liquid crystals,” Proc. SPIE3740Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 372–375 (1999).

Shiyanovskaya, I.

I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, and J. W. Doane, “50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable,” SID Symposium Digest of Technical Papers36, 1556–1559 (2005).
[CrossRef]

Sikharulidze, D.

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light Induced Effects In Cholesteric Mixtures With A Photosensitive Nematic Host,” Mol. Crys. Liq. Crys.409(1), 209–218 (2004).
[CrossRef]

Smalyukh, I. I.

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett.88, 061110 (2006).

Smith, S. W.

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

Stathopulos, H.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection with Cholesteric Liquid Crystals Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors (Basel)10(5), 4887–4897 (2010).
[CrossRef] [PubMed]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Nonlinear optical properties of fast, photoswitchable cholesteric liquid crystal bandgaps,” Opt. Mater. Express1(5), 943–952 (2011).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

Tachibana, K.

K. Shirota, K. Tachibana, and I. Yamaguchi, “Optical control of the pitch in cholesteric liquid crystals,” Proc. SPIE3740Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 372–375 (1999).

Takatsuka, H.

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Thermally stable photoalignment layer of a novel photo-crosslinkable polymethacrylate for liquid crystal display,” Jpn. J. Appl. Phys.40(Part 2, No. 3A), L209–L211 (2001).
[CrossRef]

Tamaoki, N.

N. Tamaoki, “Cholesteric Liquid Crystals for Color Information Technology,” Adv. Mater.13(15), 1135–1147 (2001).
[CrossRef]

Twieg, R. J.

D. J. Dyer, U. P. Schröder, K. P. Chan, and R. J. Twieg, “Polymer-Stabilized Reflective Cholesteric Displays: Effects of Chiral Polymer Networks on Reflectance Properties,” Chem. Mater.9(7), 1665–1669 (1997).
[CrossRef]

Walba, D. M.

G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
[CrossRef] [PubMed]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

White, T. J.

Wysocki, J.

W. Haas, J. Adams, and J. Wysocki, “Interaction Between UV Radiation and Cholesteric Liquid Crystals,” Mol. Cryst.7(1), 371–379 (1969).
[CrossRef]

Yamaguchi, I.

K. Shirota, K. Tachibana, and I. Yamaguchi, “Optical control of the pitch in cholesteric liquid crystals,” Proc. SPIE3740Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 372–375 (1999).

Yamamoto, T.

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Thermally stable photoalignment layer of a novel photo-crosslinkable polymethacrylate for liquid crystal display,” Jpn. J. Appl. Phys.40(Part 2, No. 3A), L209–L211 (2001).
[CrossRef]

Yang, D. K.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Yoon, H. C.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

Yoon, K. C.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

Yoshioka, T.

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

Zharkova, G. M.

G. M. Zharkova and V. N. Kovrizhina, “Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment,” J. Eng. Phys. Thermophy.83(6), 1136–1148 (2010).
[CrossRef]

Adv. Funct. Mater.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

Adv. Mater.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric Emulsions for Colored Displays,” Adv. Mater.17(9), 1150–1152 (2005).
[CrossRef]

T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S. N. Kim, and S. Kurihara, “Reversible-Photon-Mode Full-Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure,” Adv. Mater.17(10), 1226–1229 (2005).
[CrossRef]

N. Tamaoki, “Cholesteric Liquid Crystals for Color Information Technology,” Adv. Mater.13(15), 1135–1147 (2001).
[CrossRef]

Appl. Phys. Lett.

M. Gu, I. I. Smalyukh, and O. D. Lavrentovich, “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett.88, 061110 (2006).

Chem. Mater.

D. J. Dyer, U. P. Schröder, K. P. Chan, and R. J. Twieg, “Polymer-Stabilized Reflective Cholesteric Displays: Effects of Chiral Polymer Networks on Reflectance Properties,” Chem. Mater.9(7), 1665–1669 (1997).
[CrossRef]

J. Am. Chem. Soc.

E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
[CrossRef]

J. Appl. Phys.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

J. Eng. Phys. Thermophy.

G. M. Zharkova and V. N. Kovrizhina, “Panoramic diagnostics of surface temperatures and heat fluxes in an aerodynamic experiment,” J. Eng. Phys. Thermophy.83(6), 1136–1148 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

N. Kawatsuki, H. Takatsuka, and T. Yamamoto, “Thermally stable photoalignment layer of a novel photo-crosslinkable polymethacrylate for liquid crystal display,” Jpn. J. Appl. Phys.40(Part 2, No. 3A), L209–L211 (2001).
[CrossRef]

Jpn. J. of App. Phys.

K. C. Yoon, H. C. Yoon, K. Y. Kim, H. Cui, J. R. Park, W. Jang, and O. O. Park, “Application of Twisted Retarders to a Cholesteric Liquid Crystal Polarizer for the Control of Output Polarization States,” Jpn. J. of App. Phys.48062201-062206 (2009).

Langmuir

G. Fang, Y. Shi, J. E. Maclennan, D. M. Walba, and N. A. Clark, “Photodegradation of Azobenzene-Based Self-assembled Monolayers Characterized by In-Plane Birefringence,” Langmuir27(17), 10407–10411 (2011).
[CrossRef] [PubMed]

Mol. Crys. Liq. Crys.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, and M. P. De Santo, “Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation,” Mol. Crys. Liq. Crys.434, 353–366 (2005).

S. V. Serak, N. V. Tabiryan, G. Chilaya, A. Chanishvili, and G. Petriashvili, “Chiral azobenzene nematics phototunable with a green laser beam,” Mol. Crys. Liq. Crys.488(1), 42–55 (2008).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light Induced Effects In Cholesteric Mixtures With A Photosensitive Nematic Host,” Mol. Crys. Liq. Crys.409(1), 209–218 (2004).
[CrossRef]

Mol. Cryst.

W. Haas, J. Adams, and J. Wysocki, “Interaction Between UV Radiation and Cholesteric Liquid Crystals,” Mol. Cryst.7(1), 371–379 (1969).
[CrossRef]

Opt. Express

Opt. Mater. Express

Photochem. Photophys.

H. Rau, “Photoisomerization of azobenzenes,” Photochem. Photophys.2, 119–141 (1990).

Sensors (Basel)

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent Vapour Detection with Cholesteric Liquid Crystals Optical and Mass-Sensitive Evaluation of the Sensor Mechanism,” Sensors (Basel)10(5), 4887–4897 (2010).
[CrossRef] [PubMed]

Other

K. Shirota, K. Tachibana, and I. Yamaguchi, “Optical control of the pitch in cholesteric liquid crystals,” Proc. SPIE3740Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 372–375 (1999).

D. J. Yang D-K, ” Cholesteric liquid crystal/polymer gel dispersions: reflective displays,” Proc SID Int Symp Dig Tech Papers23, 759–762 (1992).

H. Coles, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, “Chiral Nematics: Physical Properties and Applications,” in Handbook of Liquid Crystals Set (Wiley-VCH Verlag GmbH, 2008), pp. 335–409.

D.-K. Y. Shin-Tson Wu, Reflective Liquid Cystal Displays (Wiley, Chichester, 2002)

R. Shashidhar, L. Huang, C. E. O'Ferrall, W. J. Fritz, S. W. Smith, R. Hewitt, and J. W. Doane, “Plastic liquid crystal displays from conducting polymer,” Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, 586-590 (1997).

I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, and J. W. Doane, “50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable,” SID Symposium Digest of Technical Papers36, 1556–1559 (2005).
[CrossRef]

E. Montbach, D. J. Davis, A. Khan, T. Schneider, D. Marhefka, O. Pishnyak, T. Ernst, N. Miller, and J. W. Doane, “Novel flexible Reflex displays,” Proc. SPIE 7232 Emerging Liquid Crystal Technologies IV, 7232203 (2009).

M. D. Robinson, G. Sharp, and J. Chen, Polarization engineering for LCD projection (Wiley, 2005), Vol. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

a) Schematic representation of the substrate, b) optical microscope image of the paper substrate.

Fig. 2
Fig. 2

Schematic representation of the flexible CLC mirror.

Fig. 3
Fig. 3

a) Polymerization of the CLC film and b) patterning of RGB mirrors on the CLC Film. Reflective mirrors are patterned using a mask with interchangeable semi-transparent pixels.

Fig. 4
Fig. 4

Flexible CLC mirrors (a,c) and their selective reflections with peaks located at λ0 = 470 nm (a), and λ0 = 545 nm (b).

Fig. 5
Fig. 5

CLC mirrors after photo polymerization show a strong resistance to mechanical deformation and maintain a perfect reflectance.

Fig. 6
Fig. 6

CLC films with patterned arrays of reflective mirrors a) and b). In c) mirrors prepared irradiating the device with different exposure times: 1, 2 and 3 correspond to 6, 12 and 18 minutes of irradiation respectively.

Fig. 7
Fig. 7

Spectral positions of the selective reflections: a) before UV irradiation, b) after 9 minutes of UV exposure, c) after 18 minutes of UV exposure

Fig. 8
Fig. 8

Selective reflection of the CLC film, λ0 is the maximum middle point of the selective reflection, λ1and λ2 the borders of the FWHM interval of selective reflection.

Fig. 9
Fig. 9

Polarization conversions of the light beam reflected from the mirror, a) polymer layer thickness d = 15.2 μm and b) polymer layer thickness d = 30.2 μm. The experimental set up used to analyze the light reflected from the mirrors is also shown: 1-unpolarized light, 2- polymer sheet, 3-linearly polarized light, 4-circularly polarized light, 5- λ/4 plate, 6-linear polarizer (analyzer), 7-spectrometer.

Fig. 10
Fig. 10

Orientational dependence of the reflected light intensities as a function of the analyzer rotation for a mirror prepared with the 15.2 mm thick teflon film 1. and the 30.2mm thick teflon film 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ=2πΔnd/λ.
ϕ=2πΔnd/λ´=2π×0.01× 15.2 0.560 =0.54π π 2 λ/4 ϕ=2πΔnd/λ´´=2π×0.01× 15.2 0.605 = π 2 =λ/4 ϕ=2πΔnd/λ´´´ = 2π×0.01× 15.2 0.650 =0.47π π 2 λ/4.
ϕ=2πΔnd/λ´=2π×0.01× 30.2 0.560 =1.07ππλ/2 ϕ=2πΔnd/λ´´=2π×0.01× 30.2 0.605 =1.0π=λ/2 ϕ=2πΔnd/λ´´´ = 2π×0.01× 30.2 0.650 =0.93ππλ/2.

Metrics